Form factor approach to dynamical correlation functions in critical models

作者: N Kitanine , K K Kozlowski , J M Maillet , N A Slavnov , V Terras

DOI: 10.1088/1742-5468/2012/09/P09001

关键词: AmplitudeForm factor (quantum field theory)MathematicsMinor (linear algebra)Statistical physicsIntegrable systemGapless playbackLuttinger liquidSchrödinger equationQuantumQuantum mechanics

摘要: We develop a form factor approach to the study of dynamical correlation functions quantum integrable models in critical regime. As an example, we consider non-linear Schrodinger model. derive long-distance/long-time asymptotic behavior various two-point this also compute edge exponents and amplitudes characterizing power-law response on particle/hole excitation thresholds. These last results confirm predictions based Luttinger liquid method. Our rely first principles derivation, microscopic analysis model, without invoking, at any stage, some correspondence with continuous field theory. Furthermore, our only makes use certain general properties so that it should be applicable, possibly minor modifications, wide class (not necessarily integrable) gapless one dimensional Hamiltonians.

参考文章(97)
Pavel M. Bleher, Alexander R Its, Random Matrix Models and Their Applications Cambridge University Press. ,(2001)
F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, Temperature correlation functions in the XX0 Heisenberg chain. I Theoretical and Mathematical Physics. ,vol. 94, pp. 11- 38 ,(1993) , 10.1007/BF01016992
Dennis B. Creamer, H. B. Thacker, David Wilkinson, Some exact results for the two-point function of an integrable quantum field theory Physical Review D. ,vol. 23, pp. 3081- 3084 ,(1981) , 10.1103/PHYSREVD.23.3081
H. D. Cornean, J. Dereziński, P. Ziń, ON THE INFIMUM OF THE ENERGY-MOMENTUM SPECTRUM OF A HOMOGENEOUS BOSE GAS Journal of Mathematical Physics. ,vol. 50, pp. 062103- 062103 ,(2009) , 10.1063/1.3129489
Elliott H. Lieb, Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum Physical Review. ,vol. 130, pp. 1616- 1624 ,(1963) , 10.1103/PHYSREV.130.1616
Tai Tsun Wu, Barry M. McCoy, Craig A. Tracy, Eytan Barouch, Spin spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region Physical Review B. ,vol. 13, pp. 316- 374 ,(1976) , 10.1103/PHYSREVB.13.316
N. A. Slavnov, Nonequal-time current correlation function in a one-dimensional Bose gas Theoretical and Mathematical Physics. ,vol. 82, pp. 273- 282 ,(1990) , 10.1007/BF01029221
Grigori Olshanski, Alexei Borodin, Distributions on Partitions, Point Processes,¶ and the Hypergeometric Kernel Communications in Mathematical Physics. ,vol. 211, pp. 335- 358 ,(2000) , 10.1007/S002200050815
K. Ohtaka, Y. Tanabe, Theory of the soft-x-ray edge problem in simple metals: historical survey and recent developments Reviews of Modern Physics. ,vol. 62, pp. 929- 991 ,(1990) , 10.1103/REVMODPHYS.62.929
Dennis B. Creamer, H.B. Thacker, David Wilkinson, A study of correlation functions for the delta-function Bose gas Physica D: Nonlinear Phenomena. ,vol. 20, pp. 155- 186 ,(1986) , 10.1016/0167-2789(86)90029-1