Trajectory Analysis and Semantic Region Modeling Using Nonparametric Hierarchical Bayesian Models

作者: Xiaogang Wang , Keng Teck Ma , Gee-Wah Ng , W. Eric L. Grimson

DOI: 10.1007/S11263-011-0459-6

关键词: Dirichlet distributionNonparametric statisticsTrajectoryPattern recognitionArtificial intelligenceCluster analysisPattern recognition (psychology)Object (computer science)Gibbs samplingBayesian probabilityComputer scienceData mining

摘要: We propose a novel framework of using nonparametric Bayesian model, called Dual Hierarchical Dirichlet Processes (Dual-HDP) (Wang et al. in IEEE Trans. Pattern Anal. Mach. Intell. 31:539---555, 2009), for unsupervised trajectory analysis and semantic region modeling surveillance settings. In our approach, trajectories are treated as documents observations an object on words document. Trajectories clustered into different activities. Abnormal detected samples with low likelihoods. The regions, which subsets paths commonly taken by objects related to activities the scene, also modeled. Under Dual-HDP, both number activity categories regions automatically learnt from data. this paper, we further extend Dual-HDP Dynamic model allows dynamic update models online detection normal/abnormal Experiments evaluated simulated data set two real sets, include 8,478 radar tracks collected maritime port 40,453 visual parking lot.

参考文章(70)
Tran The Truyen, D.Q. Phung, S. Venkatesh, H.H. Bui, AdaBoost.MRF: Boosted Markov Random Forests and Application to Multilevel Activity Recognition computer vision and pattern recognition. ,vol. 2, pp. 1686- 1693 ,(2006) , 10.1109/CVPR.2006.49
René Vidal, Richard Hartley, None, Motion segmentation with missing data using PowerFactorization and GPCA computer vision and pattern recognition. ,vol. 2, pp. 310- 316 ,(2004) , 10.1109/CVPR.2004.1315180
S. Hongeng, R. Nevatia, Multi-agent event recognition international conference on computer vision. ,vol. 2, pp. 84- 91 ,(2001) , 10.1109/ICCV.2001.937608
Fei-Fei Li, P. Perona, A Bayesian hierarchical model for learning natural scene categories computer vision and pattern recognition. ,vol. 2, pp. 524- 531 ,(2005) , 10.1109/CVPR.2005.16
Tao Xiang, Shaogang Gong, Video behaviour profiling and abnormality detection without manual labelling international conference on computer vision. ,vol. 2, pp. 1238- 1245 ,(2005) , 10.1109/ICCV.2005.248
Max Welling, Arthur U. Asuncion, Padhraic Smyth, Asynchronous Distributed Learning of Topic Models neural information processing systems. ,vol. 21, pp. 81- 88 ,(2008)
G. Gennari, G.D. Hager, Probabilistic data association methods in visual tracking of groups computer vision and pattern recognition. ,vol. 2, pp. 876- 881 ,(2004) , 10.1109/CVPR.2004.1315257
N. Anjum, A. Cavallaro, Multifeature Object Trajectory Clustering for Video Analysis IEEE Transactions on Circuits and Systems for Video Technology. ,vol. 18, pp. 1555- 1564 ,(2008) , 10.1109/TCSVT.2008.2005603
Xiaoxu Ma, Eric Grimson, Unsupervised Activity Perception by Hierarchical Bayesian Models computer vision and pattern recognition. pp. 1- 8 ,(2007) , 10.1109/CVPR.2007.383072
Erik B. Sudderth, Alan S. Willsky, William T. Freeman, Antonio Torralba, Describing Visual Scenes using Transformed Dirichlet Processes neural information processing systems. ,vol. 18, pp. 1297- 1304 ,(2005)