AdaBoost.MRF: Boosted Markov Random Forests and Application to Multilevel Activity Recognition

作者: Tran The Truyen , D.Q. Phung , S. Venkatesh , H.H. Bui

DOI: 10.1109/CVPR.2006.49

关键词:

摘要: Activity recognition is an important issue in building intelligent monitoring systems. We address the of multilevel activities this paper via a conditional Markov random field (MRF), known as dynamic (DCRF). Parameter estimation general MRFs using maximum likelihood to be computationally challenging (except for extreme cases), and thus we propose efficient boosting-based algorithm AdaBoost.MRF task. Distinct from most existing work, our can handle hidden variables (missing labels) particularly attractive smarthouse domains where reliable labels are often sparsely observed. Furthermore, method works exclusively on trees guaranteed converge. apply algorithmto home video surveillance application demonstrate its efficacy.

参考文章(15)
Peter Bartlett, M Frean, Llew Mason, Jon Baxter, Functional Gradient Techniques for Combining Hypotheses MIT Press. pp. 221- 246 ,(2000)
H. H. Bui, S. Venkatesh, G. West, Policy recognition in the abstract hidden Markov model Journal of Artificial Intelligence Research. ,vol. 17, pp. 451- 499 ,(2002) , 10.1613/JAIR.839
Robert E. Schapire, Yoram Singer, Improved boosting algorithms using confidence-rated predictions conference on learning theory. ,vol. 37, pp. 80- 91 ,(1998) , 10.1145/279943.279960
C. Sminchisescu, A. Kanaujia, Zhiguo Li, D. Metaxas, Conditional models for contextual human motion recognition international conference on computer vision. ,vol. 2, pp. 1808- 1815 ,(2005) , 10.1109/ICCV.2005.59
William T. Freeman, Antonio Torralba, Kevin P. Murphy, Contextual Models for Object Detection Using Boosted Random Fields neural information processing systems. ,vol. 17, pp. 1401- 1408 ,(2004)
Julian Besag, Spatial Interaction and the Statistical Analysis of Lattice Systems Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 36, pp. 192- 225 ,(1974) , 10.1111/J.2517-6161.1974.TB00999.X
Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov, Training conditional random fields via gradient tree boosting Twenty-first international conference on Machine learning - ICML '04. pp. 28- ,(2004) , 10.1145/1015330.1015428
Sanjiv Kumar, Hebert, Discriminative random fields: a discriminative framework for contextual interaction in classification international conference on computer vision. pp. 1150- 1157 ,(2003) , 10.1109/ICCV.2003.1238478
N. Oliver, E. Horvitz, A. Garg, Layered representations for human activity recognition Proceedings. Fourth IEEE International Conference on Multimodal Interfaces. pp. 3- 8 ,(2002) , 10.1109/ICMI.2002.1166960
M.J. Wainwright, T.S. Jaakkola, A.S. Willsky, A new class of upper bounds on the log partition function IEEE Transactions on Information Theory. ,vol. 51, pp. 2313- 2335 ,(2005) , 10.1109/TIT.2005.850091