Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms

作者: Stephen M. Robinson

DOI: 10.1007/BF01585500

关键词: Numerical analysisMathematicsNonlinear programming algorithmsModes of convergenceVariation (game tree)Mathematical optimizationKarush–Kuhn–Tucker conditionsConvergence (routing)Class (set theory)Nonlinear system

摘要: This paper establishes quantitative bounds for the variation of an isolated local minimizer a general nonlinear program under perturbations in objective function and constraints. These are then applied to establish rates convergence class recursive nonlinear-programming algorithms.

参考文章(15)
A. P. Robertson, L. V. Kantorovich, Gleb Pavlovich Akilov, D. E. Brown, Functional analysis in normed spaces ,(1952)
V. I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals Soviet physics. Doklady. ,vol. 10, pp. 707- 710 ,(1966)
J. P. Evans, F. J. Gould, Stability in Nonlinear Programming Operations Research. ,vol. 18, pp. 107- 118 ,(1970) , 10.1287/OPRE.18.1.107
J. B. Rosen, Iterative Solution of Nonlinear Optimal Control Problems SIAM Journal on Control. ,vol. 4, pp. 223- 244 ,(1966) , 10.1137/0304021
Richard H. Day, Peter E. Kennedy, RECURSIVE DECISION SYSTEMS: AN EXISTENCE ANALYSIS' Econometrica. ,vol. 38, pp. 666- 681 ,(1970) , 10.2307/1912200
Robert L. Armacost, Anthony V. Fiacco, Computational experience in sensitivity analysis for nonlinear programming Mathematical Programming. ,vol. 6, pp. 301- 326 ,(1974) , 10.1007/BF01580247
Stephen M. Robinson, A quadratically-convergent algorithm for general nonlinear programming problems Mathematical Programming. ,vol. 3-3, pp. 145- 156 ,(1972) , 10.1007/BF01584986
E.S. Levitin, B.T. Polyak, Constrained minimization methods USSR Computational Mathematics and Mathematical Physics. ,vol. 6, pp. 1- 50 ,(1966) , 10.1016/0041-5553(66)90114-5