On Quantitative Stability Of Point-to-Set-Mappings and the Rate of Convergence of Corresponding Algorithms

作者: S. Ellenberg , J. Guddat

DOI: 10.1007/978-94-009-7901-7_4

关键词:

摘要: It is known that many algorithms for solving non-linear optimization problems, generalized variational inequalities etc. can be described by point-to-set mappings (see instance W.I. Zangwill 1969 /19/, R.R. Meyer 1970 /10/, P. Huard 1975 /6/).

参考文章(10)
Hubert Schwetlick, Numerische Lösung nichtlinearer Gleichungen Oldenbourg. ,(1978)
P. Huard, Optimization algorithms and point-to-set-maps Mathematical Programming. ,vol. 8, pp. 308- 331 ,(1975) , 10.1007/BF01580449
David W. Peterson, Willard I. Zangwill, Nonlinear programming : a unified approach Econometrica. ,vol. 40, pp. 411- ,(1972) , 10.2307/1909424
Robert Meyer, The Validity of a Family of Optimization Methods Siam Journal on Control. ,vol. 8, pp. 41- 54 ,(1970) , 10.1137/0308003
Michael H. Stern, Donald M. Topkis, Rates of Stability in Nonlinear Programming Operations Research. ,vol. 24, pp. 462- 476 ,(1976) , 10.1287/OPRE.24.3.462
William W. Hager, Lipschitz Continuity for Constrained Processes SIAM Journal on Control and Optimization. ,vol. 17, pp. 321- 338 ,(1979) , 10.1137/0317026
James M. Ortega, Werner C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables ,(1970)
Marguerite Frank, Philip Wolfe, An algorithm for quadratic programming Naval Research Logistics Quarterly. ,vol. 3, pp. 95- 110 ,(1956) , 10.1002/NAV.3800030109