Unsupervised structure classes vs. supervised property classes of silicon quantum dots using neural networks.

作者: Amanda J. Parker , Amanda S. Barnard

DOI: 10.1039/D0NH00637H

关键词: Artificial neural networkDomain knowledgeQuantum dotData setArtificial intelligenceUnsupervised learningStatistical classificationComputer scienceProperty (programming)Pattern recognitionSet (abstract data type)

摘要: Machine learning classification is a useful technique to predict structure/property relationships in samples of nanomaterials where distributions sizes and mixtures shapes are persistent. The separation classes, however, can either be supervised based on domain knowledge (human intelligence), or entirely unsupervised machine (artificial intelligence). This raises the questions as which approach more reliable, how they compare? In this study we combine an ensemble data set electronic structure simulations size, shape peak wavelength for optical emission hydrogen passivated silicon quantum dots with artificial neural networks explore utility different types classes. By comparing domain-driven data-driven approaches find there disconnect between what see (optical emission) assume (that particular color band represents special class), supports. Contrary expectation, controlling limited structural characteristics not specific enough classify dot color, even though it experimentally intuitive.

参考文章(30)
Dongkuan Xu, Yingjie Tian, A Comprehensive Survey of Clustering Algorithms Annals of Data Science. ,vol. 2, pp. 165- 193 ,(2015) , 10.1007/S40745-015-0040-1
Sadegh Askari, Manuel Macias-Montero, Tamilselvan Velusamy, Paul Maguire, Vladmir Svrcek, Davide Mariotti, Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas Journal of Physics D. ,vol. 48, pp. 314002- ,(2015) , 10.1088/0022-3727/48/31/314002
Kai-Yuan Cheng, Rebecca Anthony, Uwe R. Kortshagen, Russell J. Holmes, High-Efficiency Silicon Nanocrystal Light-Emitting Devices Nano Letters. ,vol. 11, pp. 1952- 1956 ,(2011) , 10.1021/NL2001692
Christian Kübel, Annie K. Powell, Geoffrey A. Ozin, Uli Lemmer, Florian Maier-Flaig, Julia Rinck, Moritz Stephan, Tobias Bocksrocker, Michael Bruns, Multicolor Silicon Light-Emitting Diodes (SiLEDs) Nano Letters. ,vol. 13, pp. 475- 480 ,(2013) , 10.1021/NL3038689
Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, Kristin A Persson, None, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation APL Materials. ,vol. 1, pp. 011002- 011002 ,(2013) , 10.1063/1.4812323
Kai-Yuan Cheng, Rebecca Anthony, Uwe R. Kortshagen, Russell J. Holmes, Hybrid Silicon Nanocrystal-Organic Light-Emitting Devices for Infrared Electroluminescence Nano Letters. ,vol. 10, pp. 1154- 1157 ,(2010) , 10.1021/NL903212Y
Hugh F. Wilson, Lauren McKenzie-Sell, Amanda S. Barnard, Shape dependence of the band gaps in luminescent silicon quantum dots Journal of Materials Chemistry C. ,vol. 2, pp. 9451- 9456 ,(2014) , 10.1039/C4TC01312C
Lorenzo Mangolini, Synthesis, properties, and applications of silicon nanocrystals Journal of Vacuum Science & Technology B. ,vol. 31, pp. 020801- ,(2013) , 10.1116/1.4794789
Shanmugavel Chinnathambi, Song Chen, Singaravelu Ganesan, Nobutaka Hanagata, Silicon Quantum Dots for Biological Applications Advanced Healthcare Materials. ,vol. 3, pp. 10- 29 ,(2014) , 10.1002/ADHM.201300157
T.U.M.S. Murthy, N. Miyamoto, M. Shimbo, J. Nishizawa, Gas-phase nucleation during the thermal decomposition of silane in hydrogen Journal of Crystal Growth. ,vol. 33, pp. 1- 7 ,(1976) , 10.1016/0022-0248(76)90072-5