Fast hydriding Mg–Zr–Mn–Ni alloy compositions for high capacity hydrogen storage application

作者: K.G. Bambhaniya , G.S. Grewal , V. Shrinet , N.L. Singh , T.P. Govindan

DOI: 10.1016/J.IJHYDENE.2011.04.099

关键词: Ball millParticle sizeChemical engineeringHydrogen storageMaterials scienceMetallurgyEnergy carrierGravimetric analysisHydrogenCrystalliteAlloy

摘要: Abstract Hydrogen is one of the best alternative to petroleum as an energy carrier. However, development a Hydrogen-based economy requires commercialization safe and cost-effective storage system. In this paper, alloys belonging Mg–Zr–Mn–Ni alloy system are synthesized using high ball milling method. The particle size evolution, chemical analysis nano-scaled structures were characterized by SEM, EDXS XRD techniques, respectively. optimized - highest hydrogen storing has about 8.36 ± 1.17 μm with crystallite 16.99 ± 5.48 nm. absorption-desorption measurement carried out on principle pressure reduction coded MZ1 shows uptake greater than 7 mass % H2 at charging temperature 200 °C, indicating gravimetric capacity relatively lower hydriding temperature. also considerably enhanced – dehydriding kinetics, compare pure Mg.

参考文章(18)
Qian Li, Kuo-Chih Chou, Qin Lin, Li-Jun Jiang, Feng Zhan, Hydrogen absorption and desorption kinetics of Ag–Mg–Ni alloys International Journal of Hydrogen Energy. ,vol. 29, pp. 843- 849 ,(2004) , 10.1016/J.IJHYDENE.2003.10.002
A Zaluska, L Zaluski, J.O Ström–Olsen, Nanocrystalline magnesium for hydrogen storage Journal of Alloys and Compounds. ,vol. 288, pp. 217- 225 ,(1999) , 10.1016/S0925-8388(99)00073-0
M.G. Shelyapina, D. Fruchart, P. Wolfers, Electronic structure and stability of new FCC magnesium hydrides Mg7MH16 and Mg6MH16 (M = Ti, V, Nb): An ab initio study International Journal of Hydrogen Energy. ,vol. 35, pp. 2025- 2032 ,(2010) , 10.1016/J.IJHYDENE.2009.12.171
P SELVAM, B VISWANATHAN, C SWAMY, V SRINIVASAN, Magnesium and magnesium alloy hydrides International Journal of Hydrogen Energy. ,vol. 11, pp. 169- 192 ,(1986) , 10.1016/0360-3199(86)90082-0
Michael U Niemann, Sesha S Srinivasan, Ayala R Phani, Ashok Kumar, D Yogi Goswami, Elias K Stefanakos, None, Nanomaterials for Hydrogen Storage Applications: A Review Journal of Nanomaterials. ,vol. 2008, pp. 1- 9 ,(2008) , 10.1155/2008/950967
B SAKINTUNA, F LAMARIDARKRIM, M HIRSCHER, Metal hydride materials for solid hydrogen storage: a review International Journal of Hydrogen Energy. ,vol. 32, pp. 1121- 1140 ,(2007) , 10.1016/J.IJHYDENE.2006.11.022
Jörg Kapischke, Jobst Hapke, Measurement of the pressure-composition isotherms of high-temperature and low-temperature metal hydrides Experimental Thermal and Fluid Science. ,vol. 18, pp. 70- 81 ,(1998) , 10.1016/S0894-1777(98)10007-9
Nobuko Hanada, Takayuki Ichikawa, Hironobu Fujii, Catalytic effect of niobium oxide on hydrogen storage properties of mechanically ball milled MgH2 Physica B-condensed Matter. ,vol. 383, pp. 49- 50 ,(2006) , 10.1016/J.PHYSB.2006.03.051
Rudy W. P. Wagemans, Joop H. van Lenthe, Petra E. de Jongh, A. Jos van Dillen, Krijn P. de Jong, Hydrogen storage in magnesium clusters: quantum chemical study. Journal of the American Chemical Society. ,vol. 127, pp. 16675- 16680 ,(2005) , 10.1021/JA054569H
M. V. Lototsky, R. V. Denys, V. A. Yartys, Combustion‐type hydrogenation of nanostructured Mg‐based composites for hydrogen storage International Journal of Energy Research. ,vol. 33, pp. 1114- 1125 ,(2009) , 10.1002/ER.1604