Pseudo-Seq: Genome-Wide Detection of Pseudouridine Modifications in RNA.

作者: Thomas M. Carlile , Maria F. Rojas-Duran , Wendy V. Gilbert

DOI: 10.1016/BS.MIE.2015.03.011

关键词: BiologyDNA sequencingGeneticsRNARNA extractionMessenger RNAPseudouridineGenomeEnzymeComputational biologySaccharomyces cerevisiae

摘要: RNA molecules contain a variety of chemically diverse, posttranscriptionally modified bases. The most abundant base found in cellular RNAs, pseudouridine (Ψ), has recently been mapped to hundreds sites mRNAs, many which are dynamically regulated. Though the landscape determined only few cell types and growth conditions, enzymes responsible for mRNA pseudouridylation universally conserved, suggesting novel pseudouridylated remain be discovered. Here, we present Pseudo-seq, technique that allows identification genome-wide with single-nucleotide resolution. In this chapter, provide detailed description Pseudo-seq. We include protocols isolation from Saccharomyces cerevisiae, Pseudo-seq library preparation, data analysis, including descriptions processing mapping sequencing reads, computational pseudouridylation, assignment specific synthases. approach presented here is readily adaptable any or tissue type high-quality can isolated. Identification an important first step elucidating regulation functions these modifications.

参考文章(46)
Frank F. Davis, Frank Worthington Allen, Ribonucleic acids from yeast which contain a fifth nucleotide. Journal of Biological Chemistry. ,vol. 227, pp. 907- 915 ,(1957) , 10.1016/S0021-9258(18)70770-9
Martine A. Collart, Salvatore Oliviero, Preparation of yeast RNA Current protocols in molecular biology. ,vol. 23, pp. 13121- 13125 ,(1993) , 10.1002/0471142727.MB1312S23
Peter J. Unrau, David P. Bartel, RNA-catalysed nucleotide synthesis Nature. ,vol. 395, pp. 260- 263 ,(1998) , 10.1038/26193
Robert W. Holley, George A. Everett, James T. Madison, Ada Zamir, NUCLEOTIDE SEQUENCES IN THE YEAST ALANINE TRANSFER RIBONUCLEIC ACID. Journal of Biological Chemistry. ,vol. 240, pp. 2122- 2128 ,(1965) , 10.1016/S0021-9258(18)97435-1
X. Tan, Z. J. Lu, G. Gao, Q. Xu, L. Hu, C. Fellmann, M. Z. Li, H. Qu, S. W. Lowe, G. J. Hannon, S. J. Elledge, Tiling genomes of pathogenic viruses identifies potent antiviral shRNAs and reveals a role for secondary structure in shRNA efficacy. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 109, pp. 869- 874 ,(2012) , 10.1073/PNAS.1119873109
Y. Tanaka, T.A. Dyer, G.G. Brownlee, An improved direct RNA sequence method; its application to Vida faba 5.8S ribosomal RNA Nucleic Acids Research. ,vol. 8, pp. 1259- 1272 ,(1980) , 10.1093/NAR/8.6.1259
Jingwei Ni, Amy L Tien, Maurille J Fournier, Small Nucleolar RNAs Direct Site-Specific Synthesis of Pseudouridine in Ribosomal RNA Cell. ,vol. 89, pp. 565- 573 ,(1997) , 10.1016/S0092-8674(00)80238-X
Anita Durairaj, Patrick A. Limbach, Improving CMC-derivatization of pseudouridine in RNA for mass spectrometric detection. Analytica Chimica Acta. ,vol. 612, pp. 173- 181 ,(2008) , 10.1016/J.ACA.2008.02.026
Franck C. Courtes, Chen Gu, Niki S.C. Wong, Peter C. Dedon, Miranda G.S. Yap, Dong-Yup Lee, 28S rRNA is inducibly pseudouridylated by the mTOR pathway translational control in CHO cell cultures Journal of Biotechnology. ,vol. 174, pp. 16- 21 ,(2014) , 10.1016/J.JBIOTEC.2014.01.024