Structural and functional-annotation of an equine whole genome oligoarray

作者: Lauren A Bright , Shane C Burgess , Bhanu Chowdhary , Cyprianna E Swiderski , Fiona M McCarthy

DOI: 10.1186/1471-2105-10-S11-S8

关键词: Functional genomicsComputational biologyStructural genomicsGenomeGenomicsProteomicsGeneticsAnnotationDNA microarrayBiologyHorse genome

摘要: Background The horse genome is sequenced, allowing equine researchers to use high-throughput functional genomics platforms such as microarrays; next-generation sequencing for gene expression and proteomics. However, derive value from these datasets, they must be able model this data in biologically relevant ways; do so requires that the more fully annotated. There are two interrelated types of genomic annotation: structural functional. Structural annotation delineating demarcating elements (such genes, promoters, regulatory elements). Functional assigning function elements. The Gene Ontology (GO) de facto standard annotation, routinely used a basis modelling hypothesis testing, large datasets.

参考文章(20)
Bhanu P. Chowdhary, Nandina Paria, Terje Raudsepp, Potential applications of equine genomics in dissecting diseases and fertility. Animal Reproduction Science. ,vol. 107, pp. 208- 218 ,(2008) , 10.1016/J.ANIREPROSCI.2008.04.010
David P Hill, Barry Smith, Monica S McAndrews-Hill, Judith A Blake, Gene Ontology annotations: what they mean and where they come from BMC Bioinformatics. ,vol. 9, pp. 1- 9 ,(2008) , 10.1186/1471-2105-9-S5-S2
Kirsty Jensen, Edith Paxton, David Waddington, Richard Talbot, Mohamed A. Darghouth, Elizabeth J. Glass, Differences in the transcriptional responses induced by Theileria annulata infection in bovine monocytes derived from resistant and susceptible cattle breeds. International Journal for Parasitology. ,vol. 38, pp. 313- 325 ,(2008) , 10.1016/J.IJPARA.2007.08.007
Teresia J Buza, Ranjit Kumar, Cathy R Gresham, Shane C Burgess, Fiona M McCarthy, Facilitating functional annotation of chicken microarray data BMC Bioinformatics. ,vol. 10, pp. 1- 7 ,(2009) , 10.1186/1471-2105-10-S11-S2
Xi Chen, Lily Wang, Integrating biological knowledge with gene expression profiles for survival prediction of cancer. Journal of Computational Biology. ,vol. 16, pp. 265- 278 ,(2009) , 10.1089/CMB.2008.12TT
Siok Hwee Tan, Antonio Reverter, YongHong Wang, Keren A. Byrne, Sean M. McWilliam, Sigrid A. Lehnert, Gene expression profiling of bovine in vitro adipogenesis using a cDNA microarray Functional & Integrative Genomics. ,vol. 6, pp. 235- 249 ,(2006) , 10.1007/S10142-005-0016-X
F.M. McCarthy, S.M. Bridges, S.C. Burgess, GOing from functional genomics to biological significance. Cytogenetic and Genome Research. ,vol. 117, pp. 278- 287 ,(2007) , 10.1159/000103189
Kiera A. Finucane, Thomas B. McFadden, Jeffrey P. Bond, John J. Kennelly, Feng-Qi Zhao, Onset of lactation in the bovine mammary gland: gene expression profiling indicates a strong inhibition of gene expression in cell proliferation. Functional & Integrative Genomics. ,vol. 8, pp. 251- 264 ,(2008) , 10.1007/S10142-008-0074-Y
Bhanu P. Chowdhary, Terje Raudsepp, The Horse Genome Derby: racing from map to whole genome sequence Chromosome Research. ,vol. 16, pp. 109- 127 ,(2008) , 10.1007/S10577-008-1204-Z