QUANTIZED ALGEBRAS OF FUNCTIONS ON HOMOGENEOUS SPACES WITH POISSON STABILIZERS

作者: Sergey Neshveyev , Lars Tuset

DOI: 10.1007/S00220-012-1455-6

关键词: Bruhat orderComposition seriesPure mathematicsMaximal torusDiscrete mathematicsWeyl groupFlag (linear algebra)MathematicsIrreducible representationPoisson manifoldPoisson algebra

摘要: Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K closed Poisson-Lie subgroup, 0 < q 1. We study quantization C(Gq/Kq) of the algebra continuous functions on G/K. Using results Soibelman and Dijkhuizen-Stokman we classify irreducible representations obtain composition series for C(Gq/Kq). describe closures symplectic leaves G/K refining well-known description in case flag manifolds terms Bruhat order. then show that same rules topology spectrum Next family C*-algebras C(Gq/Kq), ≤ 1, has canonical structure field provides strict deformation \({\mathbb{C}[G/K]}\) . Finally, extending result Nagy, is canonically KK-equivalent to C(G/K).

参考文章(34)
Etienne Blanchard, Déformations de $C\sp*$-algèbres de Hopf Bulletin de la Soci&#233;t&#233; math&#233;matique de France. ,vol. 124, pp. 141- 215 ,(1996) , 10.24033/BSMF.2278
Camille Laurent-Gengoux, Anne Pichereau, Pol Vanhaecke, Poisson–Lie Groups Springer, Berlin, Heidelberg. pp. 291- 325 ,(2013) , 10.1007/978-3-642-31090-4_11
Leonid I. Korogodski, Yan S. Soibelman, Algebras of functions on quantum groups American Mathematical Society. ,(1998)
Jiang-Hua Lu, Alan Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions Journal of Differential Geometry. ,vol. 31, pp. 501- 526 ,(1990) , 10.4310/JDG/1214444324
Robert Steinberg, John Faulkner, Robert Wilson, Lectures on Chevalley Groups University Lecture Series. ,vol. 66, ,(2016) , 10.1090/ULECT/066
Francesco D’Andrea, Ludwik Dąbrowski, Dirac Operators on Quantum Projective Spaces Communications in Mathematical Physics. ,vol. 295, pp. 731- 790 ,(2010) , 10.1007/S00220-010-0989-8
Gabriel Nagy, Bivariant K-Theories for C*-Algebras K-Theory. ,vol. 19, pp. 47- 108 ,(2000) , 10.1023/A:1007892728499