Stable Signal Reconstruction via $\ell^1$ -Minimization in Redundant, Non-Tight Frames

作者: Markus Haltmeier

DOI: 10.1109/TSP.2012.2222396

关键词: Signal reconstructionMinificationMathematicsOrthonormal basisArtificial intelligenceCompressed sensingA priori and a posterioriSignal transfer functionImage processingComputer visionSystem of linear equations

摘要: In many signal and image processing applications, a desired clean is distorted from blur noise. Reconstructing the usually yields to high dimensional ill-conditioned system of equations, where direct solution would severely amplify Stable reconstruction requires use regularization techniques, which incorporate priori knowledge about signal. A particular successful property for that purpose sparsity analysis coefficients in suitable frame or dictionary, can be implemented via l1 -minimization. Most existing stable recovery results l1-analysis minimization require an orthonormal basis. This contrasts practical redundant frames often perform better than bases. this paper we address issue derive redundant, possibly non-tight frames.

参考文章(21)
Emmanuel J. Candes, Terence Tao, Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? IEEE Transactions on Information Theory. ,vol. 52, pp. 5406- 5425 ,(2006) , 10.1109/TIT.2006.885507
R. Gribonval, M. Nielsen, Sparse representations in unions of bases IEEE Transactions on Information Theory. ,vol. 49, pp. 3320- 3325 ,(2003) , 10.1109/TIT.2003.820031
J.A. Tropp, Just relax: convex programming methods for identifying sparse signals in noise IEEE Transactions on Information Theory. ,vol. 52, pp. 1030- 1051 ,(2006) , 10.1109/TIT.2005.864420
J.J. Fuchs, Recovery of exact sparse representations in the presence of bounded noise IEEE Transactions on Information Theory. ,vol. 51, pp. 3601- 3608 ,(2005) , 10.1109/TIT.2005.855614
D. L. Donoho, M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 2197- 2202 ,(2003) , 10.1073/PNAS.0437847100
J.-J. Fuchs, On sparse representations in arbitrary redundant bases IEEE Transactions on Information Theory. ,vol. 50, pp. 1341- 1344 ,(2004) , 10.1109/TIT.2004.828141
T. Tony Cai, Guangwu Xu, Jun Zhang, On Recovery of Sparse Signals Via $\ell _{1}$ Minimization IEEE Transactions on Information Theory. ,vol. 55, pp. 3388- 3397 ,(2009) , 10.1109/TIT.2009.2021377
Emmanuel J Candes, Justin K Romberg, Terence Tao, None, Stable signal recovery from incomplete and inaccurate measurements Communications on Pure and Applied Mathematics. ,vol. 59, pp. 1207- 1223 ,(2006) , 10.1002/CPA.20124
Gabriel Peyré, Charles Dossal, Samuel Vaiter, Jalal Fadili, Robust Sparse Analysis Regularization arXiv: Information Theory. ,(2011)