Improved contrast in ultra-low-field MRI with time-dependent bipolar prepolarizing fields: theory and NMR demonstrations

作者: Jaakko O. Nieminen , Jens Voigt , Stefan Hartwig , Hans Jürgen Scheer , Martin Burghoff

DOI: 10.2478/MMS-2013-0028

关键词: Magnetic resonance imagingDispersion (chemistry)PhysicsUltra low fieldTime courseSignal strengthSpin–lattice relaxationMagnetic fieldNuclear magnetic resonancePolarization (waves)

摘要: The spin-lattice (T1) relaxation rates of materials depend on the strength external magnetic field in which occurs. This T1 dispersion has been suggested to offer a means discriminate between healthy and cancerous tissue by performing resonance imaging (MRI) at low fields. In prepolarized ultra-low-field (ULF) MRI, spin precession is detected fields order 10–100 μT. To increase signal strength, sample first magnetized with relatively strong polarizing field. Typically, kept constant during polarization period. However, ULF polarizing-field can be easily varied produce desired time course. paper describes how novel variation duration optimize contrast two types having different dispersions. addition, NMR experiments showing that principle works practice are presented. described procedure may become key component for promising new approach MRI ultra-low

参考文章(24)
Panu T. Vesanen, Jaakko O. Nieminen, Koos C. J. Zevenhoven, Juhani Dabek, Lauri T. Parkkonen, Andrey V. Zhdanov, Juho Luomahaara, Juha Hassel, Jari Penttilä, Juha Simola, Antti I. Ahonen, Jyrki P. Mäkelä, Risto J. Ilmoniemi, Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer Magnetic Resonance in Medicine. ,vol. 69, pp. 1795- 1804 ,(2013) , 10.1002/MRM.24413
C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, R. L. Walsworth, Low-field MRI of laser polarized noble gas. Physical Review Letters. ,vol. 81, pp. 3785- 3788 ,(1998) , 10.1103/PHYSREVLETT.81.3785
Sarah Busch, Michael Hatridge, Michael Mößle, Whittier Myers, Travis Wong, Michael Mück, Kevin Chew, Kyle Kuchinsky, Jeffry Simko, John Clarke, Measurements of T1-relaxation in ex vivo prostate tissue at 132 μT Magnetic Resonance in Medicine. ,vol. 67, pp. 1138- 1145 ,(2012) , 10.1002/MRM.24177
M Espy, M Flynn, J Gomez, C Hanson, R Kraus, P Magnelind, K Maskaly, A Matlashov, S Newman, T Owens, M Peters, H Sandin, I Savukov, L Schultz, A Urbaitis, P Volegov, V Zotev, Ultra-low-field MRI for the detection of liquid explosives Superconductor Science and Technology. ,vol. 23, pp. 034023- ,(2010) , 10.1088/0953-2048/23/3/034023
Dara Ó Hógáin, Gareth R Davies, Simona Baroni, Silvio Aime, David J Lurie, The use of contrast agents with fast field-cycling magnetic resonance imaging Physics in Medicine and Biology. ,vol. 56, pp. 105- 115 ,(2011) , 10.1088/0031-9155/56/1/007
Vadim S. Zotev, Andrei N. Matlashov, Petr L. Volegov, Igor M. Savukov, Michelle A. Espy, John C. Mosher, John J. Gomez, Robert H. Kraus, Microtesla MRI of the human brain combined with MEG Journal of Magnetic Resonance. ,vol. 194, pp. 115- 120 ,(2008) , 10.1016/J.JMR.2008.06.007
G. M. Bydder, R. E. Steiner, L. H. Blumgart, S. Khenia, I. R. Young, MR imaging of the liver using short TI inversion recovery sequences. Journal of Computer Assisted Tomography. ,vol. 9, pp. 1084- 1089 ,(1985) , 10.1097/00004728-198511000-00015
P. A. Bottomley, C. J. Hardy, R. E. Argersinger, G. Allen-Moore, A review of 1 H nuclear magnetic resonance relaxation in pathology: Are T 1 and T 2 diagnostic? Medical Physics. ,vol. 14, pp. 1- 37 ,(1987) , 10.1118/1.596111
Helmut W. Fischer, Peter A. Rinck, Yves van Haverbeke, Robert N. Muller, Nuclear relaxation of human brain gray and white matter: Analysis of field dependence and implications for MRI Magnetic Resonance in Medicine. ,vol. 16, pp. 317- 334 ,(1990) , 10.1002/MRM.1910160212