The extended homogeneous balance method and its applications for a class of nonlinear evolution equations

作者: SA El-Wakil , EM Abulwafa , A Elhanbaly , MA Abdou , None

DOI: 10.1016/J.CHAOS.2006.03.010

关键词: MapleAlgebraic numberMathematical analysisClass (set theory)Riccati equationHomogeneousNonlinear evolutionBalance (metaphysics)Harmonic balanceMathematicsGeneral Mathematics

摘要: Abstract The extended homogeneous balance method with the aid of computer algebraic system Maple, is proposed for seeking travelling wave solutions a class nonlinear evolution equations, in which applied to solve Riccati equation and reduced respectively. Many new exact are successfully obtained. straightforward concise, it can be also other equations.

参考文章(16)
S.A. Elwakil, S.K. El-labany, M.A. Zahran, R. Sabry, Exact travelling wave solutions for the generalized shallow water wave equation Chaos Solitons & Fractals. ,vol. 17, pp. 121- 126 ,(2003) , 10.1016/S0960-0779(02)00414-9
Miki Wadati, H. Segur, M. J. Ablowitz, A New Hamiltonian Amplitude Equation Governing Modulated Wave Instabilities Journal of the Physical Society of Japan. ,vol. 61, pp. 1187- 1193 ,(1992) , 10.1143/JPSJ.61.1187
Shikuo Liu, Zuntao Fu, Shida Liu, Qiang Zhao, JACOBI ELLIPTIC FUNCTION EXPANSION METHOD AND PERIODIC WAVE SOLUTIONS OF NONLINEAR WAVE EQUATIONS Physics Letters A. ,vol. 289, pp. 69- 74 ,(2001) , 10.1016/S0375-9601(01)00580-1
M. Wadati, H. Sanuki, K. Konno, Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws Progress of Theoretical Physics. ,vol. 53, pp. 419- 436 ,(1975) , 10.1143/PTP.53.419
Mingliang Wang, Exact solutions for a compound KdV-Burgers equation Physics Letters A. ,vol. 213, pp. 279- 287 ,(1996) , 10.1016/0375-9601(96)00103-X
Mingliang Wang, SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS Physics Letters A. ,vol. 199, pp. 169- 172 ,(1995) , 10.1016/0375-9601(95)00092-H
S.A. Elwakil, S.K. El-labany, M.A. Zahran, R. Sabry, New exact solutions for a generalized variable coefficients 2D KdV equation Chaos Solitons & Fractals. ,vol. 19, pp. 1083- 1086 ,(2004) , 10.1016/S0960-0779(03)00276-5