Solution of coupled system of nonlinear differential equations using homotopy analysis method

作者: Mehdi Ganjiani , Hossein Ganjiani

DOI: 10.1007/S11071-008-9386-7

关键词: Nonlinear systemSplit-step methodHarmonic balanceAdomian decomposition methodMathematicsMathematical analysisHomotopy analysis methodNumerical partial differential equationsWork (thermodynamics)Nonlinear differential equations

摘要: In this article, the homotopy analysis method has been applied to solve a coupled nonlinear diffusion–reaction equations. The validity of successful by applying it for these results obtained have good agreement with one other methods. This work illustrates differential basic ideas approach can be widely employed strongly problems.

参考文章(28)
VB Matveev, MA Salle, Darboux transformations and solitons ,(1992)
S.A. Elwakil, S.K. El-labany, M.A. Zahran, R. Sabry, New exact solutions for a generalized variable coefficients 2D KdV equation Chaos Solitons & Fractals. ,vol. 19, pp. 1083- 1086 ,(2004) , 10.1016/S0960-0779(03)00276-5
A. H. Khater, M. A. Helal, O. H. El-Kalaawy, Bäcklund transformations: exact solutions for the KdV and the Calogero-Degasperis-Fokas mKdV equations Mathematical Methods in the Applied Sciences. ,vol. 21, pp. 719- 731 ,(1998) , 10.1002/(SICI)1099-1476(19980525)21:8<719::AID-MMA971>3.0.CO;2-5
Abdul-Majid Wazwaz, Distinct variants of the KdV equation with compact and noncompact structures Applied Mathematics and Computation. ,vol. 150, pp. 365- 377 ,(2004) , 10.1016/S0096-3003(03)00238-8
SA El-Wakil, MA Abdou, A Elhanbaly, None, Adomian decomposition method for solving the diffusion–convection–reaction equations Applied Mathematics and Computation. ,vol. 177, pp. 729- 736 ,(2006) , 10.1016/J.AMC.2005.09.105
SA El-Wakil, MA Abdou, None, New applications of variational iteration method using Adomian polynomials Nonlinear Dynamics. ,vol. 52, pp. 41- 49 ,(2008) , 10.1007/S11071-007-9256-8
Shi-Jun Liao, An approximate solution technique not depending on small parameters: A special example International Journal of Non-linear Mechanics. ,vol. 30, pp. 371- 380 ,(1995) , 10.1016/0020-7462(94)00054-E