MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing

作者: Luis García Esteban , Francisco García Fernández , Paloma de Palacios

DOI: 10.1016/J.COMPSTRUC.2009.08.010

关键词: Nondestructive testingYoung's modulusStructural engineeringUltrasonic wave propagationMultilayer perceptronEngineeringArtificial neural networkVisual gradingArtificial intelligenceAbies pinsapo

摘要: Determining the modulus of elasticity wood by applying an artificial neural network using physical properties and non-destructive testing can be a useful method in assessments timber structure old constructions. The Abies pinsapo Boiss. was predicted this study through parameters density, width, thickness, moisture content, ultrasonic wave propagation velocity visual grading test pieces. A feedforward multilayer perceptron designed for purpose, achieving 75.0% success or unknown group.

参考文章(59)
András Tompos, József L. Margitfalvi, Ernő Tfirst, Károly Héberger, Predictive performance of “highly complex” artificial neural networks Applied Catalysis A-general. ,vol. 324, pp. 90- 93 ,(2007) , 10.1016/J.APCATA.2007.02.052
TN Singh, S Sinha, VK Singh, None, Prediction of thermal conductivity of rock through physico-mechanical properties Building and Environment. ,vol. 42, pp. 146- 155 ,(2007) , 10.1016/J.BUILDENV.2005.08.022
Sandhya Samarasinghe, Don Kulasiri, Tristan Jamieson, Neural Networks for predicting fracture toughness of individual wood samples Silva Fennica. ,vol. 41, ,(2007) , 10.14214/SF.309
J.A. Hernández-Pérez, M.A. Garcı́a-Alvarado, G. Trystram, B. Heyd, Neural networks for the heat and mass transfer prediction during drying of cassava and mango Innovative Food Science and Emerging Technologies. ,vol. 5, pp. 57- 64 ,(2004) , 10.1016/J.IFSET.2003.10.004
J. I. Fernández-Golfín Seco, M. Conde García, E. Hermoso Prieto, Mejora de la predicción de la resistencia y rigidez de la madera estructural con el método de ultrasonidos combinado con parámetros de clasificación visual Materiales De Construccion. ,vol. 57, pp. 49- 59 ,(2007) , 10.3989/MC.2007.V57.I288.64
Adil Baykasoğlu, Türkay Dereli, Serkan Tanış, Prediction of cement strength using soft computing techniques Cement and Concrete Research. ,vol. 34, pp. 2083- 2090 ,(2004) , 10.1016/J.CEMCONRES.2004.03.028
I.-C. Yeh, Modeling of strength of high-performance concrete using artificial neural networks Cement and Concrete Research. ,vol. 28, pp. 1797- 1808 ,(1998) , 10.1016/S0008-8846(98)00165-3
Luis García Esteban, Francisco García Fernández, Paloma de Palacios de Palacios, Ruth Moreno Romero, Nieves Navarro Cano, Artificial Neural Networks in Wood Identification: The Case of two Juniperus Species from the Canary Islands Iawa Journal. ,vol. 30, pp. 87- 94 ,(2009) , 10.1163/22941932-90000206
G. Krauss, J.I. Kindangen, P. Depecker, Using artificial neural networks to predict interior velocity coefficients Building and Environment. ,vol. 32, pp. 295- 303 ,(1997) , 10.1016/S0360-1323(96)00059-5
S Malinov, W Sha, Software products for modelling and simulation in materials science Computational Materials Science. ,vol. 28, pp. 179- 198 ,(2003) , 10.1016/S0927-0256(03)00106-X