A Novel Particle Swarm Optimizer Using Optimal Foraging Theory

作者: Ben Niu , Yunlong Zhu , Kunyuan Hu , Sufen Li , Xiaoxian He

DOI: 10.1007/11816102_7

关键词: Particle swarm optimizerArtificial intelligenceOptimal foraging theoryPremature convergenceMathematical optimizationComputer scienceBenchmark (computing)

摘要: Based on the research of optimal foraging theory (OFT), we present a novel particle swarm optimizer (PSO) to improve performance standard PSO (SPSO). The resulting algorithm is known as PSOOFT that makes use two mechanisms OFT: reproduction strategy enhance ability converge rapidly good solutions and patch-choice based scheme keep right balance exploration exploitation. In simulation studies, several benchmark functions are performed, proposed compared experimental results show prevents premature convergence high degree, but still has more rapid rate than SPSO.

参考文章(26)
Tim Blackwell, Jürgen Branke, Multi-swarm Optimization in Dynamic Environments Lecture Notes in Computer Science. pp. 489- 500 ,(2004) , 10.1007/978-3-540-24653-4_50
Anikó Ekárt, Mario Giacobini, Anna Isabel Esparcia-Alcázar, Stefano Cagnoni, Anthony Brabazon, Muddassar Farooq, Penousal Machado, Gianni A. di Caro, Andreas Fink, Applications of Evolutionary Computing ,(2008)
Ben Niu, Yunlong Zhu, Xiaoxian He, Construction of Fuzzy Models for Dynamic Systems Using Multi-population Cooperative Particle Swarm Optimizer Fuzzy Systems and Knowledge Discovery. pp. 987- 1000 ,(2005) , 10.1007/11539506_123
Thomas Caraco, Luc-Alain Giraldeau, Social Foraging Theory ,(2000)
Ben Niu, Yunlong Zhu, Xiaoxian He, Multi-population cooperative particle swarm optimization european conference on artificial life. pp. 874- 883 ,(2005) , 10.1007/11553090_88
Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization congress on evolutionary computation. ,vol. 3, pp. 101- 106 ,(1999) , 10.1109/CEC.1999.785511
A. Chatterjee, P. Siarry, Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization Computers & Operations Research. ,vol. 33, pp. 859- 871 ,(2006) , 10.1016/J.COR.2004.08.012
X.H. Shi, Y.C. Liang, H.P. Lee, C. Lu, L.M. Wang, An improved GA and a novel PSO-GA-based hybrid algorithm Information Processing Letters. ,vol. 93, pp. 255- 261 ,(2005) , 10.1016/J.IPL.2004.11.003
S. He, Q.H. Wu, J.Y. Wen, J.R. Saunders, R.C. Paton, A particle swarm optimizer with passive congregation Biosystems. ,vol. 78, pp. 135- 147 ,(2004) , 10.1016/J.BIOSYSTEMS.2004.08.003
Changkyu Choi, Ju-Jang Lee, Chaotic local search algorithm Artificial Life and Robotics. ,vol. 2, pp. 41- 47 ,(1998) , 10.1007/BF02471151