作者: Ewan Klein , Daniel Duma
DOI:
关键词: Linked data 、 Information retrieval 、 RDF 、 Sentence 、 Simple (abstract algebra) 、 Natural language processing 、 Natural language 、 Artificial intelligence 、 Computer science 、 Baseline (configuration management) 、 Structure (mathematical logic) 、 Coherence (linguistics)
摘要: We propose an architecture for generating natural language from Linked Data that automatically learns sentence templates and statistical document planning parallel RDF datasets text. have built a proof-of-concept system (LOD-DEF) trained on un-annotated text the Simple English Wikipedia triples DBpedia, focusing exclusively factual, non-temporal information. The goal of is to generate short descriptions, equivalent stubs, entities found in Datasets. evaluated LOD-DEF against simple generate-from-triples baseline human-generated output. In evaluation by humans, significantly outperforms two three measures: non-redundancy structure coherence.