Texture decomposition with particle swarm optimization method

作者: Jian-Guo Tang , Xin-Mingm Zhang , Yun-Lai Deng , Yu-Xuan Du , Zhi-Yong Chen

DOI: 10.1016/J.COMMATSCI.2005.09.015

关键词: Swarm behaviourDecomposition (computer science)AlgorithmEvaluation resultMulti-swarm optimizationLinear correlationTexture (geology)Computer scienceParticle swarm optimizationSimplex

摘要: Abstract The newly developed optimization algorithm-particle swarm (PSO) algorithm is introduced into the crystallographic texture decomposition. With linear correlation factor as evaluation parameter, both PSO and Nelder–Mead Simplex (NMS) are evaluated in this paper. result reveals that more effective when it comes to complicated multi-component textures, i.e., instead of falling local minimum NMS algorithm, goes global minimum. So high quality decomposition obtained with algorithm.

参考文章(13)
K. Helming, Th. Eschner, A new approach to texture analysis of multiphase materials using a texture component model Crystal Research and Technology. ,vol. 25, pp. K203- K208 ,(1990) , 10.1002/CRAT.2170250828
Th. Eschner, J.-J. Fundenberger, Application of Anisotropic Texture Components Textures and Microstructures. ,vol. 28, pp. 181- 195 ,(1997) , 10.1155/TSM.28.181
Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, Paul E. Wright, Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions Siam Journal on Optimization. ,vol. 9, pp. 112- 147 ,(1998) , 10.1137/S1052623496303470
J. Tarasiuk, K. Wierzbanowski, Application of the linear regression method for comparison of crystallographic textures Philosophical Magazine. ,vol. 73, pp. 1083- 1091 ,(1996) , 10.1080/01418619608243705
J. Tarasiuk, K. Wierzbanowski, B. Bacroix, Texture decomposition into Gauss-shaped functions: classical and genetic algorithm methods Computational Materials Science. ,vol. 29, pp. 179- 186 ,(2004) , 10.1016/J.COMMATSCI.2003.06.008