The geometry of complete linear maps

作者: Dan Laksov

DOI: 10.1007/BF02386122

关键词: Quasi-open mapMathematicsAffine varietyClosed immersionLine bundleGeometry

摘要:

参考文章(8)
C. De Concini, C. Procesi, Complete symmetric varieties Lecture Notes in Mathematics. pp. 1- 44 ,(1983) , 10.1007/BFB0063234
Anders Thorup, Steven Kleiman, Complete bilinear forms Algebraic Geometry Sundance 1986. pp. 253- 320 ,(1988) , 10.1007/BFB0082918
M. E. Dyer, J. Walker, Solving the subproblem in the lagrangian dual of separable discrete programs with linear constraints Mathematical Programming. ,vol. 24, pp. 107- 112 ,(1982) , 10.1007/BF01585097
J. G. Semple, On Complete Quadrics (I) Journal of the London Mathematical Society. ,vol. s1-23, pp. 258- 267 ,(1948) , 10.1112/JLMS/S1-23.4.258
Wei-Liang Chow, Zur algebraischen Geometrie. IX Mathematische Annalen. ,vol. 113, pp. 212- 224 ,(1983) , 10.1007/978-3-642-61782-9_16
Israel Vainsencher, Complete collineations and blowing up determinantal ideals Mathematische Annalen. ,vol. 267, pp. 417- 432 ,(1984) , 10.1007/BF01456098
J. A. Tyrrell, Complete quadrics and collineations in S n Mathematika. ,vol. 3, pp. 69- 79 ,(1956) , 10.1112/S0025579300000917
Francesco Severi, I fondamenti della geometria numerativa: Nel quarautesimo anniversario della mia attività scientifica Annali di Matematica Pura ed Applicata. ,vol. 19, pp. 153- 242 ,(1940) , 10.1007/BF02410545