作者: K. S. McKELVEY , M. K. SCHWARTZ
DOI: 10.1111/J.1471-8286.2005.01038.X
关键词: Dropout (neural networks) 、 Genotyping 、 Microsatellite 、 Genetic samples 、 Capture mark recapture 、 Data set 、 Biology 、 Genetics 、 Mark and recapture 、 Statistics
摘要: Abstract Genotyping error, often associated with low-quantity/quality DNA samples, is an important issue when using genetic tags to estimate abundance capture-mark-recapture (CMR). dropout, MS-Windows program, identifies both loci and samples that likely contain errors affecting CMR estimates. dropout uses a ‘bimodal test’, enumerates the number of different between each pair ‘difference in capture history test’ (DCH) determine those producing most errors. Importantly, DCH test allows one data set error-free. has been evaluated McKelvey & Schwartz (2004) now available online.