Influence of Microbial Metabolites on the Nonspecific Permeability of Mitochondrial Membranes under Conditions of Acidosis and Loading with Calcium and Iron Ions.

作者: Andrei Olenin , Nadezhda Fedotcheva , Natalia Beloborodova

DOI: 10.3390/BIOMEDICINES9050558

关键词: BiochemistryPermeability (electromagnetism)ChemistryMPTPMembraneAcidosisCalciumInner mitochondrial membraneMitochondrial permeability transition poreMitochondrion

摘要: Mitochondrial dysfunction is currently considered one of the main causes multiple organ failure in chronic inflammation and sepsis. The participation microbial metabolites disorders bioenergetic processes mitochondria has been revealed, but their influence on mitochondrial membrane permeability not yet studied. We tested various groups metabolites, including indolic phenolic acids, trimethylamine-N-oxide (TMAO) acetyl phosphate (AcP), nonspecific membranes under conditions acidosis, imbalance calcium ions excess free iron, which are inherent Changes parameters calcium-induced opening transition pore (MPTP) iron-activated swelling rat liver were evaluated. most active indole-3-carboxylic acid (ICA) benzoic (BA), activated MPTP all conditions. AcP showed opposite effect induction opening, increasing threshold concentration by 1.5 times, while TMAO only acidification. All redox-dependent effects suppressed lipid radical scavenger butyl-hydroxytoluene (BHT), indicates these activation peroxidation. Thus, can directly affect membranes, if an iron created pathological state.

参考文章(59)
Tibor Kristián, Paolo Bernardi, Bo K. Siesjö, Acidosis promotes the permeability transition in energized mitochondria: implications for reperfusion injury. Journal of Neurotrauma. ,vol. 18, pp. 1059- 1074 ,(2001) , 10.1089/08977150152693755
Senpei Yang, Guangling Bai, Lingli Chen, Qun Shen, Xianmin Diao, Guanghua Zhao, The interaction of phenolic acids with Fe(III) in the presence of citrate as studied by isothermal titration calorimetry Food Chemistry. ,vol. 157, pp. 302- 309 ,(2014) , 10.1016/J.FOODCHEM.2014.02.052
N.I. Fedotcheva, R.E. Kazakov, M.N. Kondrashova, N.V. Beloborodova, Toxic effects of microbial phenolic acids on the functions of mitochondria. Toxicology Letters. ,vol. 180, pp. 182- 188 ,(2008) , 10.1016/J.TOXLET.2008.06.861
Markus Waldecker, Tanja Kautenburger, Heike Daumann, Cordula Busch, Dieter Schrenk, Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. Journal of Nutritional Biochemistry. ,vol. 19, pp. 587- 593 ,(2008) , 10.1016/J.JNUTBIO.2007.08.002
Waseem Hassan, Mohammad Ibrahim, Cristina W. Nogueira, Antonio Luis Braga, Imdad Ullah Mohammadzai, Paulo Sergio Taube, Joao Batista Teixeira Rocha, Enhancement of iron-catalyzed lipid peroxidation by acidosis in brain homogenate: Comparative effect of diphenyl diselenide and ebselen Brain Research. ,vol. 1258, pp. 71- 77 ,(2009) , 10.1016/J.BRAINRES.2008.12.046
Charlotte Catrouillet, Mélanie Davranche, Aline Dia, Martine Bouhnik-Le Coz, Rémi Marsac, Olivier Pourret, Gérard Gruau, Geochemical modeling of Fe(II) binding to humic and fulvic acids Chemical Geology. ,vol. 372, pp. 109- 118 ,(2014) , 10.1016/J.CHEMGEO.2014.02.019
Gregory R. Wagner, Matthew D. Hirschey, Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Molecular Cell. ,vol. 54, pp. 5- 16 ,(2014) , 10.1016/J.MOLCEL.2014.03.027
Barry Halliwell, Andrew M. Jenner, Joseph Rafter, Human fecal water content of phenolics: The extent of colonic exposure to aromatic compounds Free Radical Biology and Medicine. ,vol. 38, pp. 763- 772 ,(2005) , 10.1016/J.FREERADBIOMED.2004.11.020
Jérome Larche, Steve Lancel, Sidi Mohamed Hassoun, Raphael Favory, Brigitte Decoster, Philippe Marchetti, Claude Chopin, Remi Neviere, Inhibition of Mitochondrial Permeability Transition Prevents Sepsis-Induced Myocardial Dysfunction and Mortality Journal of the American College of Cardiology. ,vol. 48, pp. 377- 385 ,(2006) , 10.1016/J.JACC.2006.02.069