On Logarithmic Simulated Annealing

作者: Andreas Albrecht , Chak-Kuen Wong

DOI: 10.1007/3-540-44929-9_23

关键词: Upper and lower boundsMaxima and minimaApproximation algorithmCombinatoricsSimulated annealingConvergence (routing)Configuration spaceRate of convergenceMathematicsLogarithm

摘要: We perform a convergence analysis of simulated annealing for the special case logarithmic cooling schedules. For this class algorithms, B. HAJEK proved that to optimum solutions requires lower bound Γ/ln (k + 2) on schedule, where k is number transitions and Γ denotes maximum value escape depth from local minima. Let n be uniform upper neighbours in underlying configuration space. Under some natural assumptions, we prove following rate: After ≥ nO(Γ) logO(1) (1/Ɛ) probability an solution larger than (1 - Ɛ). The result can applied, example, average stochastic algorithms when estimations corresponding values are known.

参考文章(17)
MICHAEL KEARNS, MING LI, LEONARD PITT, LESLIE G. VALIANT, Recent Results on Boolean Concept Learning Proceedings of the Fourth International Workshop on MACHINE LEARNING#R##N#June 22–25, 1987 University of California, Irvine. pp. 337- 352 ,(1987) , 10.1016/B978-0-934613-41-5.50037-4
A. Albrecht, S.K. Cheung, K.S. Leung, C.K. Wong, Stochastic Simulations of Two-Dimensional Composite Packings Journal of Computational Physics. ,vol. 136, pp. 559- 579 ,(1997) , 10.1006/JCPH.1997.5781
Fabio Romeo, Alberto Sangiovanni-Vincentelli, A theoretical framework for simulated annealing Algorithmica. ,vol. 6, pp. 302- 345 ,(1991) , 10.1007/BF01759049
Bruce Hajek, Cooling Schedules for Optimal Annealing Mathematics of Operations Research. ,vol. 13, pp. 311- 329 ,(1988) , 10.1287/MOOR.13.2.311
S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simulated Annealing Science. ,vol. 220, pp. 671- 680 ,(1983) , 10.1126/SCIENCE.220.4598.671
Mark Jerrum, Alistair Sinclair, Polynomial-Time Approximation Algorithms for the Ising Model SIAM Journal on Computing. ,vol. 22, pp. 1087- 1116 ,(1993) , 10.1137/0222066
Karsten Verbeurgt, Learning DNF under the uniform distribution in quasi-polynomial time conference on learning theory. pp. 314- 326 ,(1990) , 10.5555/92571.92659