Markowitz-type heuristics for computing Jacobian matrices efficiently

作者: Andreas Albrecht , Peter Gottschling , Uwe Naumann

DOI: 10.1007/3-540-44862-4_61

关键词:

摘要: We consider the problem of accumulating Jacobian matrix a nonlinear vector function by using minimal number arithmetic operations. Two new Markowitz-type heuristics are proposed for vertex elimination in linearized computational graphs, and their superiority over existing approaches is shown several tests. Similar ideas applied to derive edge techniques. The well known can be observed only partially discussed this paper. Nevertheless, significant improvements achieved both terms quality results robustness with respect different tiebreaking criteria.

参考文章(14)
M.R. Haghighat, C.H. Bischof, Hierarchical approaches to automatic differentiation ,(1996)
Brett Averick, Richard G Carter, Jorge J Moré, The MINPACK-2 test problem collection (preliminary version) ,(1991)
M. Berz, Christian Bischof, George Corliss, Andreas Griewank, Computational differentiation : techniques, applications, and tools Society for Industrial and Applied Mathematics. ,(1996)
Mohamed Tadjouddine, Shaun A. Forth, John D. Pryce, John K. Reid, Performance Issues for Vertex Elimination Methods in Computing Jacobians Using Automatic Differentiation international conference on computational science. pp. 1077- 1086 ,(2002) , 10.1007/3-540-46080-2_113
Andreas Albrecht, Chak-Kuen Wong, On Logarithmic Simulated Annealing ifip international conference on theoretical computer science. pp. 301- 314 ,(2000) , 10.1007/3-540-44929-9_23
George Corliss, Andreas Griewank, Christèle Faure, Lauren Hascoët, Uwe Naumann, Automatic differentiation of algorithms: from simulation to optimization Springer-Verlag New York, Inc.. ,(2000)
Brett M Averick, Richard G Carter, Jorge J Moré, Guo-Liang Xue, The MINPACK-2 test problem collection Other Information: PBD: Jun 1992. ,(1992) , 10.2172/79972
Uwe Naumann, Peter Gottschling, Prospects for Simulated Annealing Algorithms in Automatic Differentiation international conference on stochastic algorithms: foundations and applications. pp. 131- 144 ,(2001) , 10.1007/3-540-45322-9_9