An Integer Programming Approach to Optimal Derivative Accumulation

作者: Jieqiu Chen , Paul Hovland , Todd Munson , Jean Utke

DOI: 10.1007/978-3-642-30023-3_20

关键词:

摘要: In automatic differentiation, vertex elimination is one of the many methods for Jacobian accumulation and in general it can be much more efficient than forward mode or reverse (Forth et al. ACM Trans Math Softw 30(3):266–299, 2004; Griewank Walther, Evaluating derivatives: principles techniques algorithmic SIAM, Philadelphia, 2008). However, finding optimal sequence a computational graph hard combinatorial optimization problem. this paper, we propose to tackle problem with an integer programming (IP) technique, develop IP formulation it. This enables us use standard solver find strategy. addition, have developed several bound-tightening symmetry-breaking constraints strengthen basic formulation. We demonstrate effectiveness these enhancements through experiments.

参考文章(17)
David L. Applegate, William J. Cook, Vasek Chvatal, Robert E. Bixby, The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics) Princeton University Press. ,(2007)
Richard E. Rosenthal, GAMS -- A User's Guide ,(2004)
Jan Karel Lenstra, David Shmoys, The Traveling Salesman Problem: A Computational Study ,(2007)
Andreas Albrecht, Peter Gottschling, Uwe Naumann, Markowitz-type heuristics for computing Jacobian matrices efficiently international conference on computational science. pp. 575- 584 ,(2003) , 10.1007/3-540-44862-4_61
Uwe Naumann, Peter Gottschling, Simulated Annealing for Optimal Pivot Selection in Jacobian Accumulation international conference on stochastic algorithms: foundations and applications. pp. 83- 97 ,(2003) , 10.1007/978-3-540-39816-5_8
Laurence A. Wolsey, George L. Nemhauser, Integer and Combinatorial Optimization ,(1988)
J. F. Benders, Partitioning procedures for solving mixed-variables programming problems Numerische Mathematik. ,vol. 4, pp. 238- 252 ,(1962) , 10.1007/BF01386316
Uwe Naumann, Optimal Jacobian accumulation is NP-complete Mathematical Programming. ,vol. 112, pp. 427- 441 ,(2007) , 10.1007/S10107-006-0042-Z