Realism, nonstandard set theory, and large cardinals

作者: Karel Hrbacek

DOI: 10.1016/S0168-0072(01)00039-2

关键词: IntuitionMathematicsAxiomRealismMathematical practiceIdealizationPure mathematicsMathematical economics

摘要: Abstract Mathematicians justify axioms of set theory “intrinsically”, by reference to the universe sets their intuition, and “extrinsically”, for example, considerations simplicity or usefullness mathematical practice. Here we apply same kind justifications Nonstandard Analysis argue acceptance BNST + (Basic Set Theory plus additional Idealization axioms). has nontrivial consequences standard theory; it implies existence inner models with measurable cardinals. We also consider how practice in , compare other existing nonstandard theories.

参考文章(33)
Antonin Sochor, The alternative set theory Set Theory and Hierarchy Theory A Memorial Tribute to Andrzej Mostowski. pp. 259- 271 ,(1976) , 10.1007/BFB0096906
H. Jerome Keisler, The Hyperreal Line Springer, Dordrecht. pp. 207- 237 ,(1994) , 10.1007/978-94-015-8248-3_8
Toru Kawai, Axiom systems of nonstandard set theory Springer Berlin Heidelberg. pp. 57- 65 ,(1981) , 10.1007/BFB0090979
Karel Hrbacek, Axiomatic foundations for Nonstandard Analysis Fundamenta Mathematicae. ,vol. 98, pp. 1- 19 ,(1978) , 10.4064/FM-98-1-1-19
Nasso Mauro Di, ON THE FOUNDATIONS OF NONSTANDARD MATHEMATICS Mathematica japonicae. ,vol. 50, pp. 131- 160 ,(1999)
Andrzej Zarach, Unions of Zf--Models Which are Themselves Zf--Models Logic Colloquium '80 - Papers intended for the European Summer Meeting of the Association for Symbolic Logic. ,vol. 108, pp. 315- 342 ,(1982) , 10.1016/S0049-237X(09)70519-1
Michael Reeken, Vladimir Kanovei, MATHEMATICS IN A NONSTANDARD WORLD I Mathematica japonicae. ,vol. 45, pp. 369- 408 ,(1997)
Yves Péraire, THEORIE RELATIVE DES ENSEMBLES INTERNES Osaka Journal of Mathematics. ,vol. 29, pp. 267- 297 ,(1992) , 10.18910/8295
Martin Davis, Applied Nonstandard Analysis ,(1977)
Vladimir Kanovei, Michael Reeken, Internal approach to external sets and universes Studia Logica. ,vol. 55, pp. 229- 257 ,(1995) , 10.1007/BF01061236