The Hyperreal Line

作者: H. Jerome Keisler

DOI: 10.1007/978-94-015-8248-3_8

关键词:

摘要: The aim of this article is to explain that the hyperreal line is, what it looks like, and good for. Near beginning we shall draw pictures sketch its construction as an ultrapower real line. In middle part article, survey mathematical results about structure end, discuss philosophical issues concerning nature significance

参考文章(42)
David Pincus, The strength of the Hahn-Banach theorem Springer Berlin Heidelberg. pp. 203- 248 ,(1974) , 10.1007/BFB0066014
Jon Barwise, Admissible sets and structures ,(1975)
W. A. J. Luxemburg, Non-Standard Analysis Springer Netherlands. pp. 107- 119 ,(1977) , 10.1007/978-94-010-1138-9_6
Alfred Tarski, Une contribution à la théorie de la mesure Fundamenta Mathematicae. ,vol. 15, pp. 42- 50 ,(1930) , 10.4064/FM-15-1-42-50
P. A. Loeb, A. E. Hurd, An Introduction to Nonstandard Real Analysis ,(2011)
Imme van den Berg, Nonstandard Asymptotic Analysis ,(1987)
Th Skolem, A. Robinson, G. Hasenjaeger, G. Kreisel, H. Wang, L. Henkin, J. Łoś, Mathematical interpretation of formal systems ,(1971)