Bi-Lipschitz approximation by finite-dimensional imbeddings

作者: Karin Usadi Katz , Mikhail G. Katz

DOI: 10.1007/S10711-010-9497-4

关键词:

摘要: Gromov’s celebrated systolic inequality from ’83 is a universal volume lower bound in terms of the least length noncontractible loop M. His proof passes via strongly isometric imbedding called Kuratowski imbedding, into Banach space bounded functions on We show that admits an approximation by \({(1+\epsilon)}\)-bi-Lipschitz (onto its image), finite-dimensional for every \({\epsilon > 0}\), using first variation formula and mean value theorem.

参考文章(29)
H. Jerome Keisler, The Hyperreal Line Springer, Dordrecht. pp. 207- 237 ,(1994) , 10.1007/978-94-015-8248-3_8
Ian Nicholas Stewart, From Here to Infinity ,(1996)
Mikhail Gersh Katz, Systolic geometry and topology ,(2007)
Karin Usadi Katz, Mikhail G. Katz, Hyperellipticity and Klein bottle companionship in systolic geometry arXiv: Differential Geometry. ,(2008)
Mikhael Gromov, Filling Riemannian manifolds Journal of Differential Geometry. ,vol. 18, pp. 1- 147 ,(1983) , 10.4310/JDG/1214509283
Atsushi Katsuda, Gromov's convergence theorem and its application Nagoya Mathematical Journal. ,vol. 100, pp. 11- 48 ,(1985) , 10.1017/S0027763000000209
Yuli B. Rudyak, Stéphane Sabourau, Systolic invariants of groups and 2-complexes via Grushko decomposition Annales de l'Institut Fourier. ,vol. 58, pp. 777- 800 ,(2008) , 10.5802/AIF.2369
Victor Bangert, Mikhail G. Katz, Steven Shnider, Shmuel Weinberger, E_7, Wirtinger inequalities, Cayley 4-form, and homotopy Duke Mathematical Journal. ,vol. 146, pp. 35- 70 ,(2009) , 10.1215/00127094-2008-061