Hyperellipticity and Klein bottle companionship in systolic geometry

作者: Karin Usadi Katz , Mikhail G. Katz

DOI:

关键词: MathematicsSystolic geometryKlein surfaceSurface (topology)Klein bottleMathematical analysis

摘要: Given a hyperelliptic Klein surface, we construct companion bottles. Bavard's short loops on bottles are studied in relation to the surface improve an inequality of Gromov's systolic geometry.

参考文章(24)
Mikhail G. Katz, Stéphane Sabourau, Hyperelliptic surfaces are Loewner Proceedings of the American Mathematical Society. ,vol. 134, pp. 1189- 1195 ,(2005) , 10.1090/S0002-9939-05-08057-3
Mikhael Gromov, Misha Katz, Pierre Pansu, Stephen Semmes, None, Metric Structures for Riemannian and Non-Riemannian Spaces ,(1999)
Mikhail Gersh Katz, Systolic geometry and topology ,(2007)
Charles Loewner, Theory of Continuous Groups ,(2008)
Mikhail G. Katz, Mary Schaps, Uzi Vishne, LOGARITHMIC GROWTH OF SYSTOLE OF ARITHMETIC RIEMANN SURFACES ALONG CONGRUENCE SUBGROUPS Journal of Differential Geometry. ,vol. 76, pp. 399- 422 ,(2007) , 10.4310/JDG/1180135693
Mikhael Gromov, Filling Riemannian manifolds Journal of Differential Geometry. ,vol. 18, pp. 1- 147 ,(1983) , 10.4310/JDG/1214509283
Hugo Parlier, Fixed point free involutions on Riemann surfaces Israel Journal of Mathematics. ,vol. 166, pp. 297- 311 ,(2008) , 10.1007/S11856-008-1032-Z
P. M. Pu, Some inequalities in certain nonorientable Riemannian manifolds. Pacific Journal of Mathematics. ,vol. 2, pp. 55- 71 ,(1952) , 10.2140/PJM.1952.2.55
V. Bangert, C. Croke, S. Ivanov, M. Katz, Filling area conjecture and ovalless real hyperelliptic surfaces Geometric and Functional Analysis. ,vol. 15, pp. 577- 597 ,(2005) , 10.1007/S00039-005-0517-8
Victor Bangert, Mikhail G. Katz, Steven Shnider, Shmuel Weinberger, E_7, Wirtinger inequalities, Cayley 4-form, and homotopy Duke Mathematical Journal. ,vol. 146, pp. 35- 70 ,(2009) , 10.1215/00127094-2008-061