Cohomological dimension, self-linking, and systolic geometry

作者: Alexander N. Dranishnikov , Mikhail G. Katz , Yuli B. Rudyak

DOI: 10.1007/S11856-011-0075-8

关键词:

摘要: Given a closed manifold M, we prove the upper bound of $${1 \over 2}(\dim M + {\rm{cd}}({{\rm{\pi }}_1}M))$$ for number systolic factors in curvature-free lower total volume spirit M. Gromov’s inequalities. Here “cd” is cohomological dimension. We apply this to show that, case 4-manifold, Lusternik-Schnirelmann category an category. Furthermore, inequality on with b 1(M) = 2 presence nontrivial self-linking class typical fiber its Abel-Jacobi map 2-torus.

参考文章(61)
Marcel Berger, Du côté de chez Pu Annales Scientifiques De L Ecole Normale Superieure. ,vol. 5, pp. 1- 44 ,(1972) , 10.24033/ASENS.1219
Marcel Berger, Systoles et applications selon Gromov Séminaire Bourbaki. ,vol. 35, pp. 279- 310 ,(1993)
Octavian Cornea, None, Lusternik-Schnirelmann Category ,(2003)
Yuli Rudyak, Category weight: new ideas concerning Lusternik-Schnirelmann category Banach Center Publications. ,vol. 45, pp. 47- 61 ,(1998) , 10.4064/-45-1-47-61
Mikhael Gromov, Misha Katz, Pierre Pansu, Stephen Semmes, None, Metric Structures for Riemannian and Non-Riemannian Spaces ,(1999)
Mikhail Gersh Katz, Systolic geometry and topology ,(2007)
Chady Elmir, Jacques Lafontaine, Sur la g\'eom\'etrie systolique des vari\'et\'es de Bieberbach arXiv: Differential Geometry. ,(2008)
Takao Matumoto, Atsuko Katanaga, On 4-dimensional closed manifolds with free fundamental groups Hiroshima Mathematical Journal. ,vol. 25, pp. 367- 370 ,(1995) , 10.32917/HMJ/1206127716