Systolic geometry and topology

作者: Mikhail Gersh Katz

DOI:

关键词:

摘要: Systolic geometry in dimension 2: Geometry and topology of systoles Historical remarks The theorema egregium Gauss Global surfaces Inequalities Loewner Pu applications integral A primer on Filling area theorem for hyperelliptic Hyperelliptic are An optimal inequality CAT(0) metrics Volume entropy asymptotic upper bounds $n$ dimensions: Systoles their category Gromov's stable systolic $\mathbb{CP}^n$ inequalities dependent Massey products Cup Dual-critical lattices Generalized degree Loewner-type Higher Loewner-Gromov type $L^p$ norms Four-manifold systole asymptotics Period map image density (by Jake Solomon) Open problems Bibliography Index.

参考文章(73)
Andrew Knightly, Charles Li, Traces of Hecke Operators ,(2006)
Alden H. Wright, Monotone mappings and degree one mappings between PL manifolds Lecture Notes in Mathematics. pp. 441- 459 ,(1975) , 10.1007/BFB0066139
Boris A. Kupershmidt, KP or mKP ,(2000)
Hiroyuki Yoshida, Absolute CM-periods ,(2003)
Dana P. Williams, Crossed products of C*-algebras ,(2007)