Complex coastal change in response to autogenic basin infilling: An example from a sub‐tropical Holocene strandplain

作者: Christopher J. Hein , Duncan M. FitzGerald , Luis H. P. de Souza , Ioannis Y. Georgiou , Ilya V. Buynevich

DOI: 10.1111/SED.12265

关键词: Sedimentary rockFluvialHolocenePaleontologyUpper shorefaceOceanographyBeach morphodynamicsSedimentGeologyProgradationStructural basin

摘要: Thick bay-fill sequences that often culminate in strandplain development serve as important sedimentary archives of land–ocean interaction, although distinguishing between internal and external forcings is an ongoing challenge. This study employs sediment cores, ground-penetrating radar surveys, radiocarbon dates, palaeogeographic reconstructions hydrodynamic modelling to explore the role autogenic processes – notably a reduction wave energy response coastal embayment infilling evolution shoreline morphodynamics. Following regional 2 4 m highstand at ca 5·8 ka, 75 km2 Tijucas Strandplain southern Brazil built from fluvial sediments deposited into semi-enclosed bay. Holocene regressive deposits are underlain by sands Pleistocene transgressive–regressive sequence, backed barrier-island. The immediately 5 16 m seaward-thickening, fluvially derived, Holocene-age, basin-fill mud. Several trends observed landward (oldest) seaward (youngest) sections strandplain: (i) upper shoreface foreshore become finer thinner shift sand-dominated mud-dominated; (ii) beachface slopes decrease >11° 7°; (iii) progradation rates increase 0·4 1·8 m yr−1. Hydrodynamic demonstrates correlation progressive shoaling Bay driven sea-level fall onshore wave-energy transport 18 4 kW m−1. combination allogenic (sediment supply, falling relative geology) (decrease due bay shoaling) drove system with characteristics rare, if not unique, rock records. These findings demonstrate complexities architecture styles systems tracts. Furthermore, this article highlights diverse feedbacks responsible for these intricate marginal marine systems.

参考文章(99)
William A. Ambrose, Noel Tyler, Facies architecture and production characteristics of strandplain reservoirs in the Frio Formation, Texas University of Texas at Austin. Bureau of Economic Geology. ,(1985) , 10.26153/TSW/4756
Andrew D. Ashton, Liviu Giosan, Wave‐angle control of delta evolution Geophysical Research Letters. ,vol. 38, ,(2011) , 10.1029/2011GL047630
Mytheenkhan Baba, Shailesh R. Nayak, Chapter Fifteen Muddy coasts of India Proceedings in Marine Science. ,vol. 4, pp. 375- 390 ,(2002) , 10.1016/S1568-2692(02)80089-4
Burghard W. Flemming, Chapter Six Geographic distribution of muddy coasts Proceedings in Marine Science. ,vol. 4, pp. 99- 201 ,(2002) , 10.1016/S1568-2692(02)80080-8
Paulo Cesar Fonseca Giannini, Sistemas deposicionais no quaternário costeiro entre Jaguaruna e Imbituba, SC. Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo. ,(1993) , 10.11606/T.44.1993.TDE-11032013-133424
Christopher J Hein, DUNCAN M FitzGERALD, William J Cleary, Marcio B Albernaz, Joao Thadeu de Menezes, Antonio H da F Klein, None, Evidence for a transgressive barrier within a regressive strandplain system: Implications for complex coastal response to environmental change Sedimentology. ,vol. 60, pp. 469- 502 ,(2013) , 10.1111/J.1365-3091.2012.01348.X
Rodolfo J Angulo, Maria C de Souza, Paula J Reimer, Sueli K Sasaoka, Reservoir effect of the southern and southeastern Brazilian coast Radiocarbon. ,vol. 47, pp. 67- 73 ,(2005) , 10.1017/S0033822200052206
Michiel Schaeffer, William Hare, Stefan Rahmstorf, Martin Vermeer, Long-term sea-level rise implied by 1.5 °C and 2 °C warming levels Nature Climate Change. ,vol. 2, pp. 867- 870 ,(2012) , 10.1038/NCLIMATE1584
Gerhard Masselink, Guilherme Lessa, Barrier Stratigraphy on the Macrotidal Central Queensland Coastline, Australia Journal of Coastal Research. ,vol. 11, pp. 454- 477 ,(1995)