Development of a Model to Estimate 24-Hour Urinary Creatinine Excretion

作者: Linda M. Gerber , Samuel J. Mann

DOI: 10.1111/JCH.12294

关键词: AlbuminUrine collection deviceLinear regressionRenal functionUrinary systemInternal medicineEndocrinologyExcretionCreatinineMedicineAnalyteEndocrinology, Diabetes and MetabolismCardiology and Cardiovascular Medicine

摘要: The accuracy of the spot urine analyte/creatinine ratio in estimating 24-hour excretion analyte is compromised because it not adjusted for creatinine excretion. authors developed a model conveniently was derived from collections using multiple linear regression, including sex, weight, race, and age. then evaluated validation cohort, assessing correlation between estimated measured by comparing their with muscle mass. Estimated correlated strongly (r=0.80 entire cohort 0.93 after eliminating patients incomplete collections), at least as lean mass (r=0.94 vs r=0.82, respectively). Adjusting ratios this convenient method can improve albumin, sodium, other analytes.

参考文章(12)
Donald W. Cockcroft, Henry Gault, Prediction of Creatinine Clearance from Serum Creatinine Nephron. ,vol. 16, pp. 31- 41 ,(1976) , 10.1159/000180580
Brad C Astor, Lisa Christopher-Stine, Derek Fine, Michelle Petri, Urine protein-to-creatinine ratio is a reliable measure of proteinuria in lupus nephritis. The Journal of Rheumatology. ,vol. 31, pp. 1557- 1559 ,(2004)
Samuel J. Mann, Linda M. Gerber, Estimation of 24‐Hour Sodium Excretion from Spot Urine Samples Journal of Clinical Hypertension. ,vol. 12, pp. 174- 180 ,(2010) , 10.1111/J.1751-7176.2009.00241.X
M Mayersohn, KA Conrad, R Achari, The influence of a cooked meat meal on creatinine plasma concentration and creatinine clearance. British Journal of Clinical Pharmacology. ,vol. 15, pp. 227- 230 ,(1983) , 10.1111/J.1365-2125.1983.TB01490.X
Ji-Guang Wang, Yi Zhang, Han-E Chen, Yan Li, Xiao-Guang Cheng, Li Xu, Zhe Guo, Xing-Shan Zhao, Tetsuya Sato, Qi-Yun Cao, Ke-Min Chen, Biao Li, None, Comparison of two bioelectrical impedance analysis devices with dual energy X-ray absorptiometry and magnetic resonance imaging in the estimation of body composition. Journal of Strength and Conditioning Research. ,vol. 27, pp. 236- 243 ,(2013) , 10.1519/JSC.0B013E31824F2040
Simon M Gunn, Robert T Withers, Joe LaForgia, Body composition: validity of segmental bioelectrical impedance analysis. Asia Pacific Journal of Clinical Nutrition. ,vol. 17, pp. 586- 591 ,(2008) , 10.6133/APJCN.2008.17.4.07
Cyndya Shibao, Alfredo Gamboa, Andre Diedrich, Andrew C. Ertl, Kong Y. Chen, Daniel W. Byrne, Ginnie Farley, Sachin Y. Paranjape, Stephen N. Davis, Italo Biaggioni, Autonomic Contribution to Blood Pressure and Metabolism in Obesity Hypertension. ,vol. 49, pp. 27- 33 ,(2007) , 10.1161/01.HYP.0000251679.87348.05
J. Calles-Escandon, J. J. Cunningham, P. Snyder, R. Jacob, G. Huszar, J. Loke, P. Felig, Influence of exercise on urea, creatinine, and 3-methylhistidine excretion in normal human subjects American Journal of Physiology-endocrinology and Metabolism. ,vol. 246, ,(1984) , 10.1152/AJPENDO.1984.246.4.E334
Gary Curhan, Chi-yuan Hsu, Shimon Shaykevich, Holly J. Mattix, Use of the Albumin/Creatinine Ratio to Detect Microalbuminuria: Implications of Sex and Race Journal of The American Society of Nephrology. ,vol. 13, pp. 1034- 1039 ,(2002) , 10.1681/ASN.V1341034
Joachim H Ix, Christina L Wassel, Lesley A Stevens, Gerald J Beck, Marc Froissart, Gerjan Navis, Roger Rodby, Vicente E Torres, Yaping Lucy Zhang, Tom Greene, Andrew S Levey, None, Equations to Estimate Creatinine Excretion Rate: The CKD Epidemiology Collaboration Clinical Journal of The American Society of Nephrology. ,vol. 6, pp. 184- 191 ,(2011) , 10.2215/CJN.05030610