Drug-Metabolizing Ability of Molybdenum Hydroxylases

作者: Shigeyuki Kitamura , Kazumi Sugihara , Shigeru Ohta

DOI: 10.2133/DMPK.21.83

关键词: Oxidase testXanthine dehydrogenaseSulfoxideAldehyde oxidaseBiochemistryMolybdenumMetabolismChemistryDrugNitro

摘要: Molybdenum hydroxylases, which include aldehyde oxidase and xanthine oxidoreductase, are involved in the metabolism of some medicines humans. They exhibit activity towards various heterocyclic compounds aldehydes. The liver cytosol mammals also exhibits a significant reductase toward nitro, sulfoxide, N-oxide other moieties, catalyzed by oxidase. There is considerable variability mammals: humans show highest activity, rats mice low dogs have no detectable activity. On hand, oxidoreductase present widely among species. Interindividual variation Drug-drug interactions associated with potential clinical significance. Drug metabolizing ability molybdenum hydroxylases described this review.

参考文章(160)
Kunio Itoh, Mayumi Yamamura, Wataru Takasaki, Takamitsu Sasaki, Akiko Masubuchi, Yorihisa Tanaka, Species differences in enantioselective 2-oxidations of RS-8359, a selective and reversible MAO-A inhibitor, and cinchona alkaloids by aldehyde oxidase. Biopharmaceutics & Drug Disposition. ,vol. 27, pp. 133- 139 ,(2006) , 10.1002/BDD.494
S. Kitamura, K. Tatsumi, 1-Nitropyrene-metabolizing activities of fish liver preparations. Bulletin of Environmental Contamination and Toxicology. ,vol. 58, pp. 448- 455 ,(1997) , 10.1007/S001289900355
A. B. Renwick, S. E. Ball, J. M. Tredger, R. J. Price, D. G. Walters, J. Kao, J. A. Scatina, B. G. Lake, Inhibition of zaleplon metabolism by cimetidine in the human liver: in vitro studies with subcellular fractions and precision-cut liver slices. Xenobiotica. ,vol. 32, pp. 849- 862 ,(2002) , 10.1080/00498250210158221
Iain G.C. Robertson, Brian D. Palmer, Megan Officer, Derek J. Siegers, James W. Paxton, G. John Shaw, Cytosol mediated metabolism of the experimental antitumour agent acridine carboxamide to the 9-acridone derivative Biochemical Pharmacology. ,vol. 42, pp. 1879- 1884 ,(1991) , 10.1016/0006-2952(91)90585-S
Tetsuya Yamamoto, Yuji Moriwaki, Sumio Takahashi, Toshikazu Hada, Kazuya Higashino, In vitro conversion of pyrazinamide into 5-hydroxypyrazinamide and that of pyrazinoic acid into 5-hydroxypyrazinoic acid by xanthine oxidase from human liver. Biochemical Pharmacology. ,vol. 36, pp. 3317- 3318 ,(1987) , 10.1016/0006-2952(87)90654-X
Helen F Galley, Michael J Davies, Nigel R Webster, None, Xanthine oxidase activity and free radical generation in patients with sepsis syndrome Critical Care Medicine. ,vol. 24, pp. 1649- 1653 ,(1996) , 10.1097/00003246-199610000-00008
Ruth Vila, Mami Kurosaki, Maria Monica Barzago, Metodej Kolek, Antonio Bastone, Laura Colombo, Mario Salmona, Mineko Terao, Enrico Garattini, Regulation and Biochemistry of Mouse Molybdo-flavoenzymes Journal of Biological Chemistry. ,vol. 279, pp. 8668- 8683 ,(2004) , 10.1074/JBC.M308137200
Milan Stanulović, Sterling Chaykin, Aldehyde oxidase: Catalysis of the oxidation of N1-methylnicotinamide and pyridoxal Archives of Biochemistry and Biophysics. ,vol. 145, pp. 27- 34 ,(1971) , 10.1016/0003-9861(71)90005-1
Xin-Ru Pan-Zhou, Erika Cretton-Scott, Xiao-Jian Zhou, Ming-Xue Yang, Jerome M. Lasker, Jean-Pierre Sommadossi, Role of Human Liver P450s and Cytochrome b5 in the Reductive Metabolism of 3′-Azido-3′-deoxythymidine (AZT) to 3′-Amino-3′-deoxythymidine Biochemical Pharmacology. ,vol. 55, pp. 757- 766 ,(1998) , 10.1016/S0006-2952(97)00538-8
J. L. Johnson, W. R. Waud, K. V. Rajagopalan, M. Duran, F. A. Beemer, S. K. Wadman, Inborn errors of molybdenum metabolism: combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor Proceedings of the National Academy of Sciences of the United States of America. ,vol. 77, pp. 3715- 3719 ,(1980) , 10.1073/PNAS.77.6.3715