Effective multifractal spectrum of a random walk.

作者: Cheryl L. Berthelsen , James A. Glazier , S. Raghavachari

DOI: 10.1103/PHYSREVE.49.1860

关键词: Spectrum (functional analysis)Multifractal systemRandom walkMultiplicative cascadeStatistical physicsPhysics

摘要:

参考文章(13)
Cheryl L. Berthelsen, James A. Glazier, Mark H. Skolnick, Global fractal dimension of human DNA sequences treated as pseudorandom walks. Physical Review A. ,vol. 45, pp. 8902- 8913 ,(1992) , 10.1103/PHYSREVA.45.8902
C-K Peng, Sergej V Buldyrev, Ary L Goldberger, Shlomo Havlin, Francesco Sciortino, Michael Simons, H Eugene Stanley, Long-range correlations in nucleotide sequences Nature. ,vol. 356, pp. 168- 170 ,(1992) , 10.1038/356168A0
Richard F. Voss, Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Physical Review Letters. ,vol. 68, pp. 3805- 3808 ,(1992) , 10.1103/PHYSREVLETT.68.3805
Peter Grassberger, Itamar Procaccia, Characterization of Strange Attractors Physical Review Letters. ,vol. 50, pp. 346- 349 ,(1983) , 10.1103/PHYSREVLETT.50.346
Thomas C. Halsey, Mogens H. Jensen, Leo P. Kadanoff, Itamar Procaccia, Boris I. Shraiman, Fractal measures and their singularities: The characterization of strange sets Physical Review A. ,vol. 33, pp. 1141- 1151 ,(1986) , 10.1103/PHYSREVA.33.1141
H.G.E. Hentschel, Itamar Procaccia, The infinite number of generalized dimensions of fractals and strange attractors Physica D: Nonlinear Phenomena. ,vol. 8, pp. 435- 444 ,(1983) , 10.1016/0167-2789(83)90235-X
Harvey Gould, Jan Tobochnik, More on fractals and chaos: multifractals Computers in Physics. ,vol. 4, pp. 202- 207 ,(1990) , 10.1063/1.4822901
Tamás Tél, Ágnes Fülöp, Tamás Vicsek, Determination of fractal dimensions for geometrical multifractals Physica A: Statistical Mechanics and its Applications. ,vol. 159, pp. 155- 166 ,(1989) , 10.1016/0378-4371(89)90563-3
T Vicsek, F Family, P Meakin, Multifractal Geometry of Diffusion-Limited Aggregates EPL. ,vol. 12, pp. 217- 222 ,(1990) , 10.1209/0295-5075/12/3/005