An introduction to microarray data analysis and visualization.

作者: Gregg B. Whitworth

DOI: 10.1016/S0076-6879(10)70002-1

关键词: Data scienceVisualizationBest practiceMicroarray analysis techniquesConceptual foundationVariety (cybernetics)SoftwareBioinformaticsComputer science

摘要: Microarray experiments offer a potential wealth of information but also present significant data analysis challenge. A typical microarray project involves many interconnected manipulations the raw experimental values, and each stage challenges experimenter to make decisions regarding proper selection usage variety statistical techniques. In this chapter, we will provide an overview major stages yeast project. We focus on providing solid conceptual foundation help reader better understand these steps, highlight useful software tools, suggest best practices where applicable.

参考文章(21)
Sandrine Dudoit, Jean Yee Hwa Yang, Bioconductor R Packages for Exploratory Analysis and Normalization of cDNA Microarray Data Statistics for Biology and Health. pp. 73- 101 ,(2003) , 10.1007/0-387-21679-0_3
Alvis Brazma, Pascal Hingamp, John Quackenbush, Gavin Sherlock, Paul Spellman, Chris Stoeckert, John Aach, Wilhelm Ansorge, Catherine A. Ball, Helen C. Causton, Terry Gaasterland, Patrick Glenisson, Frank C.P. Holstege, Irene F. Kim, Victor Markowitz, John C. Matese, Helen Parkinson, Alan Robinson, Ugis Sarkans, Steffen Schulze-Kremer, Jason Stewart, Ronald Taylor, Jaak Vilo, Martin Vingron, Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics. ,vol. 29, pp. 365- 371 ,(2001) , 10.1038/NG1201-365
Thomas Boyle, The Analysis of Gene Expression Data: Methods and Software Journal of Statistical Software. ,vol. 14, pp. 1- 2 ,(2013) , 10.18637/JSS.V014.B01
Trevor J. Hastie, John M. Chambers, Statistical Models in S ,(1991)
Kam D. Dahlquist, Nathan Salomonis, Karen Vranizan, Steven C. Lawlor, Bruce R. Conklin, GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nature Genetics. ,vol. 31, pp. 19- 20 ,(2002) , 10.1038/NG0502-19
Mark J. van der Laan, Katherine S. Pollard, A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap Journal of Statistical Planning and Inference. ,vol. 117, pp. 275- 303 ,(2003) , 10.1016/S0378-3758(02)00388-9
Gordon K Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments Statistical Applications in Genetics and Molecular Biology. ,vol. 3, pp. 1- 25 ,(2004) , 10.2202/1544-6115.1027
R Radha, S Jayalakshmi, SP Rajagopalan, AA Alizadeh, MB Eisen, RE Davis, C Ma, IS Lossos, T Ando, M Katayama, DG Beer, LRK Sharon, CC Huang, TJ Giordano, AM Levin, SM Chen, YC Chen, DR Cox, U Fayyad, K Irani, M LeBlanc, H Liu, J Li, L Wong, M Lunn, DR McNeil, B Maurice, R Panneerselvam, PJ Park, L Tian, S Kohane, A Rosenwald, MA Shipp, MJ Van de Vijver, YD He, LJ van't Veer, H Dai, AA Hart, YH Yang, S Dudoit, P Luu, DM Lin, V Peng, J Ngai, TP Speed, Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation Nucleic Acids Research. ,vol. 30, ,(2002) , 10.1093/NAR/30.4.E15
S Asburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel‐Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, G Sherlock, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics. ,vol. 25, pp. 25- 29 ,(2000) , 10.1038/75556