Microarray Classification and Gene Selection with FS-NEAT

作者: Bruno Iochins Grisci , Bruno Cesar Feltes , Marcio Dorn

DOI: 10.1109/CEC.2018.8477813

关键词:

摘要: The analysis of microarrays has the potential to identify and predict diseases predisposition, such as cancer, opening a new path better diagnosis improved treatments. Additionally, can help find genetic biomarkers, which are genes whose expressions related specific disease stage or condition. But due huge number present in microarray experiments, small available samples, computational methods that deal with techniques need overcome difficulties both classification feature selection tasks. This paper presents adaptations for use FS-NEAT, an evolutionary algorithm creates optimizes neural networks through algorithms, tool satisfactorily perform tasks simultaneously automatically. method is tested Leukemia dataset containing six imbalanced classes, compared other classifiers, selected biologically validated.

参考文章(60)
Gregg B. Whitworth, An introduction to microarray data analysis and visualization. Methods in Enzymology. ,vol. 470, pp. 19- 50 ,(2010) , 10.1016/S0076-6879(10)70002-1
Radosław Januchowski, Piotr Zawierucha, Małgorzata Andrzejewska, Marcin Ruciński, Maciej Zabel, Microarray-based detection and expression analysis of ABC and SLC transporters in drug-resistant ovarian cancer cell lines. Biomedicine & Pharmacotherapy. ,vol. 67, pp. 240- 245 ,(2013) , 10.1016/J.BIOPHA.2012.11.011
Ramón Díaz-Uriarte, Sara Alvarez de Andrés, Gene selection and classification of microarray data using random forest BMC Bioinformatics. ,vol. 7, pp. 3- 3 ,(2006) , 10.1186/1471-2105-7-3
Stefano Monti, Pablo Tamayo, Jill Mesirov, Todd Golub, Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data Machine Learning. ,vol. 52, pp. 91- 118 ,(2003) , 10.1023/A:1023949509487
Muaiad Kittaneh, Alberto J. Montero, Stefan Glück, Molecular profiling for breast cancer: a comprehensive review. Biomarkers in Cancer. ,vol. 5, pp. 61- 70 ,(2013) , 10.4137/BIC.S9455
Michel Verleysen, Damien François, The Curse of Dimensionality in Data Mining and Time Series Prediction Computational Intelligence and Bioinspired Systems. ,vol. 3512, pp. 758- 770 ,(2005) , 10.1007/11494669_93
S.A. Whiteson, A. Ethembabaoglu, Automatic feature selection using FS-NEAT IAS technical reports. ,(2008)
Soroosh Sohangir, Shahram Rahimi, Bidyut Gupta, Optimized feature selection using NeuroEvolution of Augmenting Topologies (NEAT) joint ifsa world congress and nafips annual meeting. pp. 80- 85 ,(2013) , 10.1109/IFSA-NAFIPS.2013.6608379
Menno R. Vriens, Willieford Moses, Julie Weng, Miao Peng, Ann Griffin, Archie Bleyer, Brad H Pollock, Daniel J. Indelicato, Jimmy Hwang, Electron Kebebew, Clinical and molecular features of papillary thyroid cancer in adolescents and young adults. Cancer. ,vol. 117, pp. 259- 267 ,(2011) , 10.1002/CNCR.25369
Tero Aittokallio, Markus Kurki, Olli Nevalainen, Tuomas Nikula, Anne West, Riitta Lahesmaa, Computational strategies for analyzing data in gene expression microarray experiments. Journal of Bioinformatics and Computational Biology. ,vol. 1, pp. 541- 586 ,(2003) , 10.1142/S0219720003000319