Computational strategies for analyzing data in gene expression microarray experiments.

作者: Tero Aittokallio , Markus Kurki , Olli Nevalainen , Tuomas Nikula , Anne West

DOI: 10.1142/S0219720003000319

关键词:

摘要: Microarray analysis has become a widely used method for generating gene expression data on genomic scale. Microarrays have been enthusiastically applied in many fields of biological research, even though several open questions remain about the such data. A wide range approaches are available computational analysis, but no general consensus exists as to standard microarray protocol. Consequently, choice technique is crucial element depending both and goals experiment. Therefore, basic understanding bioinformatics required optimal experimental design meaningful interpretation results. This review summarizes some common themes DNA including normalization detection differential expression. Algorithms demonstrated by analyzing cDNA from an experiment monitoring T helper cells. Several biology strategies, along with their relative merits, overviewed potential areas additional research discussed. The goal provide framework applying evaluating strategies. Solid knowledge informatics contributes implementation more efficient protocols given obtained through experiments.

参考文章(180)
Afshari Ca, Bushel P, Hamadeh Hk, Martin K, Tucker Cj, Paules R, Detection of diluted gene expression alterations using cDNA microarrays. BioTechniques. ,vol. 32, pp. 322- 329 ,(2002)
Cynthia A. Afshari, Pierre Bushel, M. Kathleen Kerr, Jeanelle Martinez, Nigel J. Walker, Lee Bennett, Gary A. Churchill, STATISTICAL ANALYSIS OF A GENE EXPRESSION MICROARRAY EXPERIMENT WITH REPLICATION ,(2002)
Saied A. Jaradat, Michael Q. Zhang, Minoru S.H. Ko, Tetsuya S. Tanaka, Nila Banerjee, Gengxin Chen, Evaluation and comparison of clustering algorithms in analyzing es cell gene expression data Statistica Sinica. ,vol. 12, pp. 241- 262 ,(2002)
J.J. Schageman, M. Basit, T.D. Gallardo, H.R. Garner, R.V. Shohet, MarC-V: A Spreadsheet-Based Tool for Analysis, Normalization, and Visualization of Single cDNA Microarray Experiments BioTechniques. ,vol. 32, pp. 338- 344 ,(2002) , 10.2144/02322ST07
Christopher Workman, Lars Jensen, Hanne Jarmer, Randy Berka, Laurent Gautier, Henrik Nielser, Hans-Henrik Saxild, Claus Nielsen, Søren Brunak, Steen Knudsen, A new non-linear normalization method for reducing variability in DNA microarray experiments Genome Biology. ,vol. 3, pp. 1- 16 ,(2002) , 10.1186/GB-2002-3-9-RESEARCH0048
Yee Hwa Yang, Terry Speed, None, Design issues for cDNA microarray experiments. Nature Reviews Genetics. ,vol. 3, pp. 579- 588 ,(2002) , 10.1038/NRG863
Olga Ermolaeva, Mohit Rastogi, Kim D. Pruitt, Gregory D. Schuler, Michael L. Bittner, Yidong Chen, Richard Simon, Paul Meltzer, Jeffrey M. Trent, Mark S. Boguski, Data management and analysis for gene expression arrays Nature Genetics. ,vol. 20, pp. 19- 23 ,(1998) , 10.1038/1670
Alvis Brazma, Pascal Hingamp, John Quackenbush, Gavin Sherlock, Paul Spellman, Chris Stoeckert, John Aach, Wilhelm Ansorge, Catherine A. Ball, Helen C. Causton, Terry Gaasterland, Patrick Glenisson, Frank C.P. Holstege, Irene F. Kim, Victor Markowitz, John C. Matese, Helen Parkinson, Alan Robinson, Ugis Sarkans, Steffen Schulze-Kremer, Jason Stewart, Ronald Taylor, Jaak Vilo, Martin Vingron, Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics. ,vol. 29, pp. 365- 371 ,(2001) , 10.1038/NG1201-365
L.-L. Hsiao, R.V. Jensen, T. Yoshida, K.E. Clark, J.E. Blumenstock, S.R. Gullans, Correcting for Signal Saturation Errors in the Analysis of Microarray Data BioTechniques. ,vol. 32, pp. 330- 336 ,(2002) , 10.2144/02322ST06