Automatic feature selection using FS-NEAT

作者: S.A. Whiteson , A. Ethembabaoglu

DOI:

关键词:

摘要: This article describes a series of experiments used to analyze the FS-NEAT method on double pole-balancing domain. The is compared with regular NEAT discern its strengths and weaknesses. Both find policy, implemented in neural network, solve task by use genetic algorithms. FS-NEAT, contrary NEAT, uses different starting population. Whereas networks start out links between all inputs output, have only one link an input output. It believed that this more simple topology allows for effective feature (input)-selection.

参考文章(4)
J.R.J. Nunnink, G. Pavlin, T. Hood, M.G. Maris, P. de Oude, A Distributed Approach to Information Fusion Systems Based on Causal Probabilistic Models IAS-UVA-07-03. ,(2007)
Shimon Whiteson, Peter Stone, Kenneth O. Stanley, Risto Miikkulainen, Nate Kohl, Automatic feature selection in neuroevolution genetic and evolutionary computation conference. pp. 1225- 1232 ,(2005) , 10.1145/1068009.1068210
Kenneth O. Stanley, Risto Miikkulainen, Evolving neural networks through augmenting topologies Evolutionary Computation. ,vol. 10, pp. 99- 127 ,(2002) , 10.1162/106365602320169811
M.T.J. Spaan, F.A. Oliehoek, N. Vlassis, Properties of the QBG-value function IAS-UVA-07-04. ,(2007)