Understanding the diffusional tortuosity of porous materials: An effective medium theory perspective

作者: Xuechao Gao , João C. Diniz da Costa , Suresh K. Bhatia

DOI: 10.1016/J.CES.2013.09.050

关键词: Yield (engineering)RadiusSPHERESTortuosityDiffusion (business)ConductanceMechanicsPorous mediumChemistryMineralogyKnudsen number

摘要: The interpretation of experimental data on transport in porous materials is often based the use a single representative pore size, overlooking effects size distribution (PSD) and network connectivity, fitting tortuosity into which all such uncertainties are consigned. Using literature diffusion N2, Xe i-C4H10 mesoporous Shell silica spheres, we demonstrate that depends choice radius as well gas species. Both Knudsen model Oscillator considering dispersive fluid–solid interactions, developed this laboratory, found to adequately interpret conjunction with effective medium theory (EMT) by coordination number instead tortuosity. This insensitivity due large mean mesopore 7.4 nm for silica; however, yield value closer range values expected material. EMT dependent temperature diffusing species, because differences dependence between conductance at true connectivity PSD. In slip flow regime, obtained show superposition viscous mechanisms leads species tortuosity, different two contributions. limiting tortuosities PSD regimes. These critical aspects largely unappreciated literature, even systematic variations or usually overlooked, leading misrepresentation underlying mechanism.

参考文章(57)
A. Marković, D. Stoltenberg, D. Enke, E.-U. Schlünder, A. Seidel-Morgenstern, Gas permeation through porous glass membranes Part I: Mesoporous glasses – effect of pore diameter and surface properties Journal of Membrane Science. ,vol. 336, pp. 17- 31 ,(2009) , 10.1016/J.MEMSCI.2009.02.031
A. Imhof, D. J. Pine, Ordered macroporous materials by emulsion templating Nature. ,vol. 389, pp. 948- 951 ,(1997) , 10.1038/40105
Charles N. Satterfield, Mass transfer in heterogeneous catalysis ,(1969)
Ying Dai, J.R. Johnson, Oğuz Karvan, David S. Sholl, W.J. Koros, Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations Journal of Membrane Science. ,vol. 401-402, pp. 76- 82 ,(2012) , 10.1016/J.MEMSCI.2012.01.044
Jörg Kärger, Frank Stallmach, Sergey Vasenkov, Structure-mobility relations of molecular diffusion in nanoporous materials Magnetic Resonance Imaging. ,vol. 21, pp. 185- 191 ,(2003) , 10.1016/S0730-725X(03)00123-1
Katerina Petruševska-Seebach, Kerstin Würges, Andreas Seidel-Morgenstern, Stephan Lütz, Martin P. Elsner, Enzyme-assisted physicochemical enantioseparation processes - Part II: Solid-liquid equilibria, preferential crystallization, chromatography and racemization reaction Chemical Engineering Science. ,vol. 64, pp. 2473- 2482 ,(2009) , 10.1016/J.CES.2009.02.025
F.T. de Bruijn, L. Sun, Ž. Olujić, P.J. Jansens, F. Kapteijn, Influence of the support layer on the flux limitation in pervaporation Journal of Membrane Science. ,vol. 223, pp. 141- 156 ,(2003) , 10.1016/S0376-7388(03)00318-1
E. Iglesia, S.L. Soled, J.E. Baumgartner, S.C. Reyes, Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis Journal of Catalysis. ,vol. 153, pp. 108- 122 ,(1995) , 10.1006/JCAT.1995.1113
S. Ismadji, S. K. Bhatia, Investigation of Network Connectivity in Activated Carbons by Liquid Phase Adsorption Langmuir. ,vol. 16, pp. 9303- 9313 ,(2000) , 10.1021/LA000578M
Suresh K. Bhatia, David Nicholson, Some pitfalls in the use of the Knudsen equation in modelling diffusion in nanoporous materials Chemical Engineering Science. ,vol. 66, pp. 284- 293 ,(2011) , 10.1016/J.CES.2010.10.038