Preparation and Characterization of TiO2 Nanotube Arrays in Ionic Liquid for Water Splitting

作者: R.G. Freitas , M.A. Santanna , E.C. Pereira

DOI: 10.1016/J.ELECTACTA.2014.05.097

关键词: Analytical chemistryWater splittingFabricationMaterials scienceElectrolyteCrystallitePhotocurrentDepletion regionIonic liquidDebye length

摘要: Abstract In the present work, it is described fabrication and characterization of TiO 2 nantotubes prepared potentiostatically using 1.0 or 5.0 vol.% ionic liquid electrolyte medium at 10 20 °C. These experimental conditions led to nanotubes with 63-77 nm pore diameter, crystallite sizes between 27-33 nm, band-gap values in 3.1-3.2 eV range. Although morphology were similar, water splitting reaction showed differences terms photocurrent, up 300%. Besides, we report also important changes those parameters related electronic defects, such as carrier density ( N D ), width depletion layer w ) Debye length (λ ). Then, enhancement on photoelectrochemical properties could be a decrease rate surface recombination processes. Finally, these proposition are agreement open-circuit voltage-decay, where was observed higher electron lifetime for NT obtained liquid.

参考文章(42)
Oomman K. Varghese, Sudhir Ranjan, Craig A. Grimes, Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis ,(2011)
Heberton Wender, Adriano F. Feil, Leonardo B. Diaz, Camila S. Ribeiro, Guilherme J. Machado, Pedro Migowski, Daniel E. Weibel, Jairton Dupont, Sérgio R. Teixeira, Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Applied Materials & Interfaces. ,vol. 3, pp. 1359- 1365 ,(2011) , 10.1021/AM200156D
Michael G. Walter, Emily L. Warren, James R. McKone, Shannon W. Boettcher, Qixi Mi, Elizabeth A. Santori, Nathan S. Lewis, Solar Water Splitting Cells Chemical Reviews. ,vol. 110, pp. 6446- 6473 ,(2010) , 10.1021/CR1002326
Hongjun Wu, Zhonghai Zhang, High photoelectrochemical water splitting performance on nitrogen doped double-wall TiO2 nanotube array electrodes International Journal of Hydrogen Energy. ,vol. 36, pp. 13481- 13487 ,(2011) , 10.1016/J.IJHYDENE.2011.08.014
Benjamin H. Meekins, Prashant V. Kamat, Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano. ,vol. 3, pp. 3437- 3446 ,(2009) , 10.1021/NN900897R
P. S. Archana, R. Jose, C. Vijila, S. Ramakrishna, Improved Electron Diffusion Coefficient in Electrospun TiO2 Nanowires Journal of Physical Chemistry C. ,vol. 113, pp. 21538- 21542 ,(2009) , 10.1021/JP908238Q
Shiny E. John, Susanta K. Mohapatra, Mano Misra, Double-wall anodic titania nanotube arrays for water photooxidation. Langmuir. ,vol. 25, pp. 8240- 8247 ,(2009) , 10.1021/LA900426J
N. S. Lewis, D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization Proceedings of the National Academy of Sciences of the United States of America. ,vol. 103, pp. 15729- 15735 ,(2006) , 10.1073/PNAS.0603395103
D. L. Wood, J. Tauc, Weak Absorption Tails in Amorphous Semiconductors Physical Review B. ,vol. 5, pp. 3144- 3151 ,(1972) , 10.1103/PHYSREVB.5.3144