Existence and Uniqueness of Strong Solution for Shear Thickening Fluids of Second Grade

作者: Hafedh Bousbih , Mohamed Majdoub

DOI:

关键词: HomogeneousUniquenessDilatantCompressibilityMathematicsMotion (geometry)Mathematical analysisPeriodic boundary conditionsStrong solutionsModuli

摘要: In this paper we study the equations governing unsteady motion of an incompressible homogeneous generalized second grade fluid subject to periodic boundary conditions. We establish existence global-in-time strong solutions for shear thickening flows in two and three dimensional case. also prove uniqueness such solution without any smallness condition on initial data or restriction material moduli.

参考文章(10)
J. Málek, K.R. Rajagopal, Chapter 5 – Mathematical Issues Concerning the Navier–Stokes Equations and Some of Its Generalizations Handbook of Differential Equations: Evolutionary Equations. ,vol. 2, pp. 371- 459 ,(2005) , 10.1016/S1874-5717(06)80008-3
Giovanni P. Galdi, Ad�lia Sequeira, Further existence results for classical solutions of the equations of a second-grade fluid Archive for Rational Mechanics and Analysis. ,vol. 128, pp. 297- 312 ,(1994) , 10.1007/BF00387710
M Bulíček, J Málek, KR Rajagopal, Navier's slip and evolutionary Navier-Stokes like systems with pressure and shear-rate dependent viscosity Indiana University Mathematics Journal. ,vol. 56, pp. 51- 86 ,(2007) , 10.1512/IUMJ.2007.56.2997
Mehrdad Massoudi, Tran X. Phuoc, Unsteady motion of a non-linear viscoelastic fluid International Journal of Non-linear Mechanics. ,vol. 44, pp. 1063- 1072 ,(2009) , 10.1016/J.IJNONLINMEC.2009.08.005
Chi -Sing Man, Nonsteady channel flow of ice as a modified second-order fluid with power-law viscosity Archive for Rational Mechanics and Analysis. ,vol. 119, pp. 35- 57 ,(1992) , 10.1007/BF00376009
Jacob T. Schwartz, Richard A. Silverman, O. A. Ladyzhenskaya, Jacques E. Romain, The Mathematical Theory of Viscous Incompressible Flow ,(2014)
A.V. Busuioc, D. Iftimie, M.C. Lopes Filho, H.J. Nussenzveig Lopes, Incompressible Euler as a limit of complex fluid models with Navier boundary conditions Journal of Differential Equations. ,vol. 252, pp. 624- 640 ,(2012) , 10.1016/J.JDE.2011.06.007
Tomáš Roubíček, None, A generalization of the Lions-Temam compact imbedding theorem Časopis pro pěstování matematiky. ,vol. 115, pp. 338- 342 ,(1990) , 10.21136/CPM.1990.118410