Chapter 5 – Mathematical Issues Concerning the Navier–Stokes Equations and Some of Its Generalizations

作者: J. Málek , K.R. Rajagopal

DOI: 10.1016/S1874-5717(06)80008-3

关键词:

摘要: This chapter primarily deals with internal, isothermal, unsteady flows of a class of incompressible fluids with both constant and shear or pressure dependent viscosity that …

参考文章(122)
Hermann Sohr, The Navier-Stokes equations ,(2001)
Jean-Michel GHIDAGLIA, Roger TEMAM, LOWER BOUND ON THE DIMENSION OF THE ATTRACTOR FOR THE NAVIER-STOKES EQUATIONS IN SPACE DIMENSION 3 Mechanics, Analysis and Geometry: 200 Years After Lagrange. pp. 33- 60 ,(1991) , 10.1016/B978-0-444-88958-4.50005-7
Mark Steinhauer, On Uniqueness- and Regularity Criteria for the Navier-Stokes Equations Springer, Berlin, Heidelberg. pp. 543- 557 ,(2003) , 10.1007/978-3-642-55627-2_28
John G. Heywood, Open problems in the theory of the Navier-Stokes equations for viscous incompressible flow The Navier-Stokes Equations Theory and Numerical Methods. pp. 1- 22 ,(1990) , 10.1007/BFB0086051
Hideo Kozono, On Well—Posedness of the Navier—Stokes Equations Birkhäuser, Basel. pp. 207- 236 ,(2001) , 10.1007/978-3-0348-8243-9_9
On the thermomechanics of shape memory wires Zeitschrift für Angewandte Mathematik und Physik. ,vol. 50, pp. 459- 496 ,(1999) , 10.1007/S000330050028
C. Foias, R. Temam, A generic property of the set of stationary solutions of Navier stokes equations Springer, Berlin, Heidelberg. pp. 24- 28 ,(1976) , 10.1007/BFB0091445
Emmanuele DiBenedetto, Degenerate Parabolic Equations ,(1993)