作者: Claus Beisbart , Thomas Buchert , Herbert Wagner
DOI: 10.1016/S0378-4371(00)00612-9
关键词: Integral geometry 、 Homogeneous space 、 Mathematics 、 Pattern recognition 、 Minkowski space 、 Galaxy cluster 、 Spatial ecology 、 Artificial intelligence 、 Spatial analysis 、 Scalar (mathematics) 、 Topology 、 Curvature
摘要: Abstract Minkowski functionals constitute a family of order parameters which discriminate spatial patterns according to size, shape, and connectivity. Here we point out that these scalar descriptors can be complemented by vector-valued curvature measures also known as Quermas vectors. Using examples galaxy clusters, demonstrate the vectors provide additional morphological information on directional features symmetries displayed data.