Mining web search user behavior to enhance web search relevance

作者: Robert J. Ragno , Eric D. Brill , Yevgeny E. Agichtein , Susan T. Dumais

DOI:

关键词: Relevance (information retrieval)Collective behaviorUser modelingInformation retrievalComponent (UML)Computer user satisfactionSearch engineUnique userComputer scienceUser interface

摘要: Systems and methods that estimate user preference, via automatic interpretation of behavior. A behavior component associated with a search engine can automatically interpret collective users (e.g., web users). Such feedback include features predictive models from component) are robust to noise, which be present in observed interactions the results malicious and/or irrational activity.).

参考文章(20)
Brian Despain, William Drury, Andrei Maltsev, Method for maintaining a record of searches and results ,(2004)
Ramesh Subramonian, Ramana Venkata, Joy A. Thomas, Pangal P. Nayak, Method for creating user profiles ,(2000)
Reed Sturtevant, William Gross, Thomas McGovern, Search engine using user intent ,(2005)
Stephen R. Lawrence, Personalization of web search ,(2004)
Djemel Ziou, Alan Bernardi, Mohammed Lamine Kherfi, Content-based image retrieval method ,(2003)
Behnam Azvine, Gery Michel Ducatel, Searching apparatus and methods ,(2004)
Jason Wayne Bosarge, Aaron Clyde Crandall, Louis Hernandez, Internet search system for retrieving selected results from a previous search ,(1999)