Click noise characterization model

作者: Weizhu Chen , Adish Singla , Zheng Chen

DOI:

关键词:

摘要: The techniques discussed herein consider a degree of noise associated with user clicks performed during search sessions. then generate model that characterizes click so engines can more accurately infer document relevance.

参考文章(28)
Benyu Zhang, Wei-Ying Ma, Hua-Jun Zeng, Gui-Rong Xue, Zheng Chen, Determining relevance using queries as surrogate content ,(2005)
Milad Shokouhi, Michael J. Taylor, Filiip Radlinski, Merging search results ,(2010)
Robert J. Ragno, Eric D. Brill, Yevgeny E. Agichtein, Susan T. Dumais, Mining web search user behavior to enhance web search relevance ,(2007)
Olivier Chapelle, Shihao Ji, Zhaohui Zheng, Anlei Dong, Ciya Liao, Gordon Guo-Zheng Sun, Yi Chang, Hongyuan Zha, Global and topical ranking of search results using user clicks ,(2009)
Vanessa Murdock, Vassilis Plachouras, Massimiliano Ciaramita, Optimizing ranking functions using click data ,(2008)
Martin Szummer, Nicholas Craswell, Information retrieval using query-document pair information ,(2007)
Olivier Chapelle, Anne Ya Zhang, Click model for search rankings ,(2008)
Iftah Gamzu, Joseph Yossi Azar, Xiaoxin Yin, Ranking results of multiple intent queries ,(2009)