Neyman-type smooth tests for location-scale families

作者: J. C. W. RAYNER , D. J. BEST

DOI: 10.1093/BIOMET/73.2.437

关键词: Scale (descriptive set theory)Type (model theory)AlgorithmSmoothingStatistical hypothesis testingMathematicsGoodness of fitOrthonormal basis

摘要: SUMMARY The smooth tests of Neyman (1937) are modified to permit composite alternatives and a choice orthonormal functions in their construction. These may be chosen improve detection particular alternatives. easy apply have useful orthogonal components. A test for exponentiality is examined, shown perform well against its competitors.

参考文章(19)
Mitchell H. Gail, Joseph L. Gastwirth, A Scale-Free Goodness-of-Fit Test for the Exponential Distribution Based on the Lorenz Curve Journal of the American Statistical Association. ,vol. 73, pp. 787- 793 ,(1978) , 10.1080/01621459.1978.10480100
Herbert Solomon, Michael A. Stephens, On neyman's statistic for testing uniformity Communications in Statistics - Simulation and Computation. ,vol. 12, pp. 127- 134 ,(1983) , 10.1080/03610918308812306
NOEL CRESSIE, Power results for tests based on high-order gaps Biometrika. ,vol. 65, pp. 214- 218 ,(1978) , 10.1093/BIOMET/65.1.214
A. N. PETTITT, Generalized Cramér-von Mises statistics for the gamma distribution Biometrika. ,vol. 65, pp. 232- 235 ,(1978) , 10.1093/BIOMET/65.1.232
M. A. Hamdan, A SMOOTH TEST OF GOODNESS OF FIT BASED ON THE WALSH FUNCTIONS Australian Journal of Statistics. ,vol. 6, pp. 130- 136 ,(1964) , 10.1111/J.1467-842X.1964.TB00211.X
J.C.W. Rayner, D.J. Best, K.G. Dodds, The construction of the simple X2 and Neyman smooth goodness of fit tests Statistica Neerlandica. ,vol. 39, pp. 35- 50 ,(1985) , 10.1111/J.1467-9574.1985.TB01123.X
F. L. Miller, C. P. Quesenberry, Power studies of tests for uniformity, II Communications in Statistics - Simulation and Computation. ,vol. 8, pp. 271- 290 ,(1979) , 10.1080/03610917908812119
Govind S. Mudholkar, Chine-Chuong Lin, A Test of Exponentiality Based on the Bivariate F Distribution Technometrics. ,vol. 22, pp. 79- 82 ,(1980) , 10.1080/00401706.1980.10486104
David R. Thomas, Donald A. Pierce, Neyman's Smooth Goodness-of-Fit Test When the Hypothesis is Composite Journal of the American Statistical Association. ,vol. 74, pp. 441- 445 ,(1979) , 10.1080/01621459.1979.10482534