The construction of the simple X2 and Neyman smooth goodness of fit tests

作者: J.C.W. Rayner , D.J. Best , K.G. Dodds

DOI: 10.1111/J.1467-9574.1985.TB01123.X

关键词:

摘要: Suppose we wish to test whether data are consistent with a completely specified continuous distribution against general alternative. Familiar omnibus tests PEARSON'S X2 and NEYMAN'S smooth test. Fundamental problems in the application of these construction number classes use for X2, choice order NEYMAN This paper examines questions.

参考文章(21)
H. B. Mann, A. Wald, On the Choice of the Number of Class Intervals in the Application of the Chi Square Test Annals of Mathematical Statistics. ,vol. 13, pp. 306- 317 ,(1942) , 10.1214/AOMS/1177731569
Arthur Cohen, H. B. Sackrowitz, Unbiasedness of the Chi-Square, Likelihood Ratio, and Other Goodness of Fit Tests for the Equal Cell Case Annals of Statistics. ,vol. 3, pp. 959- 964 ,(1975) , 10.1214/AOS/1176343197
William G. Cochran, The $\chi^2$ Test of Goodness of Fit Annals of Mathematical Statistics. ,vol. 23, pp. 315- 345 ,(1952) , 10.1214/AOMS/1177729380
F. L. Miller, C. P. Quesenberry, Power studies of tests for uniformity, II Communications in Statistics - Simulation and Computation. ,vol. 8, pp. 271- 290 ,(1979) , 10.1080/03610917908812119
Kinley Larntz, Small-Sample Comparisons of Exact Levels for Chi-Squared Goodness-of-Fit Statistics Journal of the American Statistical Association. ,vol. 73, pp. 253- 263 ,(1978) , 10.1080/01621459.1978.10481567
M. C. Spruill, Cell Selection in the Chernoff-Lehmann Chi-Square Statistic Annals of Statistics. ,vol. 4, pp. 375- 383 ,(1976) , 10.1214/AOS/1176343413
D.J. Best, J.C.W. Rayner, Are Two Classes Enough for the X2Goodness of Fit Test Statistica Neerlandica. ,vol. 35, pp. 157- 163 ,(1981) , 10.1111/J.1467-9574.1981.TB00724.X