Novel method for the prediction of drug-drug Interaction based on gene expression profiles.

作者: Turki Turki , Yh. Taguchi

DOI: 10.1016/J.EJPS.2021.105742

关键词: Unsupervised learningDrug-drug interactionComputer scienceGene expressionDrugComputational biologyIn silicoTensor decomposition

摘要: Abstract The accurate prediction of new interactions between drugs is important for avoiding unknown (mild or severe) adverse reactions to drug combinations. development effective in silico methods evaluating based on gene expression data requires an understanding how various alter expression. Current computational the drug-drug (DDIs) utilize known DDIs predict interactions. However, these are limited absence predictive DDIs. To improve interpretation, a recent study has demonstrated strong non-linear (i.e., dose-dependent) effects In this study, we present unsupervised learning approach involving tensor decomposition (TD)-based feature extraction (FE) 3D. We our reanalyze available profiles Saccharomyces cerevisiae. found that non-linearity possible, even single drugs. Thus, dose-dependence cannot always be attributed Our analysis provides basis design

参考文章(32)
Murty V. Chengalvala, Vargheese M. Chennathukuzhi, Daniel S. Johnston, Panayiotis E. Stevis, Gregory S. Kopf, Gene Expression Profiling and its Practice in Drug Development Current Genomics. ,vol. 8, pp. 262- 270 ,(2007) , 10.2174/138920207781386942
Hong Cai, Edwina Scott, Abeer Kholghi, Catherine Andreadi, Alessandro Rufini, Ankur Karmokar, Robert G. Britton, Emma Horner-Glister, Peter Greaves, Dhafer Jawad, Mark James, Lynne Howells, Ted Ognibene, Michael Malfatti, Christopher Goldring, Neil Kitteringham, Joanne Walsh, Maria Viskaduraki, Kevin West, Andrew Miller, David Hemingway, William P. Steward, Andreas J. Gescher, Karen Brown, Cancer chemoprevention: Evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice Science Translational Medicine. ,vol. 7, pp. 298117- ,(2015) , 10.1126/SCITRANSLMED.AAA7619
Magdalena Bacilieri, Stefano Moro, Ligand-Based Drug Design Methodologies in Drug Discovery Process: An Overview Current Drug Discovery Technologies. ,vol. 3, pp. 155- 165 ,(2006) , 10.2174/157016306780136781
Zichen Wang, Gabriela Meirelles, Neil R Clark, Avi Ma’ayan, Edward Y Chen, Christopher M Tan, Yan Kou, Qiaonan Duan, Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool BMC Bioinformatics. ,vol. 14, pp. 128- 128 ,(2013) , 10.1186/1471-2105-14-128
Michael B. Bolger, Viera Lukacova, Walter S. Woltosz, Simulations of the nonlinear dose dependence for substrates of influx and efflux transporters in the human intestine. Aaps Journal. ,vol. 11, pp. 353- 363 ,(2009) , 10.1208/S12248-009-9111-6
Christian Schlatter, Andreas Viviani, Werner K. Lutz, Nonlinear Dose-Response Relationship for the Binding of the Carcinogen Benzo(a)pyrene to Rat Liver DNA in Vivo Cancer Research. ,vol. 38, pp. 575- 578 ,(1978)
Jacob A. Langness, Gregory T. Everson, Viral hepatitis: Drug–drug interactions in HCV treatment — the good, the bad and the ugly Nature Reviews Gastroenterology & Hepatology. ,vol. 13, pp. 194- 195 ,(2016) , 10.1038/NRGASTRO.2016.24
Ian T. Jolliffe, Jorge Cadima, Principal component analysis: a review and recent developments Philosophical Transactions of the Royal Society A. ,vol. 374, pp. 20150202- 20150202 ,(2016) , 10.1098/RSTA.2015.0202
Emily Clough, Tanya Barrett, The Gene Expression Omnibus Database Methods in Molecular Biology. ,vol. 1418, pp. 93- 110 ,(2016) , 10.1007/978-1-4939-3578-9_5