Implicit iteration methods in Hilbert scales under general smoothness conditions

作者: Qinian Jin , Ulrich Tautenhahn

DOI: 10.1088/0266-5611/27/4/045012

关键词: Mathematical analysisA priori and a posterioriRegularization (mathematics)MathematicsFast algorithmMonotonic function

摘要: For solving linear ill-posed problems regularization methods are required when the right hand side is with some noise. In present paper regularized solutions obtained by implicit iteration in Hilbert scales. % By exploiting operator monotonicity of certain functions and interpolation techniques variable scales, we study these under general smoothness conditions. Order optimal error bounds given case parameter chosen either {\it a priori} or posteriori} discrepancy principle. realizing principle, fast algorithm proposed which based on Newton's method applied to properly transformed equations.

参考文章(34)
U. Hämarik, U. Tautenhahn, On the Monotone Error Rule for Parameter Choice in Iterative and Continuous Regularization Methods Bit Numerical Mathematics. ,vol. 41, pp. 1029- 1038 ,(2001) , 10.1023/A:1021945429767
V.A. Morozov, On the solution of functional equations by the method of regularization Doklady Mathematics. ,vol. 7, pp. 414- 417 ,(1966)
M. Hanke, C. W. Groetsch, Nonstationary Iterated Tikhonov Regularization Journal of Optimization Theory and Applications. ,vol. 98, pp. 37- 53 ,(1998) , 10.1023/A:1022680629327
Ulrich Tautenhahn, Optimality for ill-posed problems under general source conditions Numerical Functional Analysis and Optimization. ,vol. 19, pp. 377- 398 ,(1998) , 10.1080/01630569808816834
Torsten Schröter, Ulrich Tautenhahn, Error estimates for Tikhonov regularization in Hilbert scales Numerical Functional Analysis and Optimization. ,vol. 15, pp. 155- 168 ,(1994) , 10.1080/01630569408816556
Peter Math, Sergei V Pereverzev, Geometry of linear ill-posed problems in variable Hilbert scales Inverse Problems. ,vol. 19, pp. 789- 803 ,(2003) , 10.1088/0266-5611/19/3/319
Qinian Jin, Ulrich Tautenhahn, Inexact Newton regularization methods in Hilbert scales Numerische Mathematik. ,vol. 117, pp. 555- 579 ,(2011) , 10.1007/S00211-010-0342-3
P Pornsawad, C Böckmann, Convergence rate analysis of the first-stage Runge?Kutta-type regularizations Inverse Problems. ,vol. 26, pp. 035005- ,(2010) , 10.1088/0266-5611/26/3/035005
Ulrich Tautenhahn, Error Estimates for Regularization Methods in Hilbert Scales SIAM Journal on Numerical Analysis. ,vol. 33, pp. 2120- 2130 ,(1996) , 10.1137/S0036142994269411
Andreas Neubauer, An a Posteriori Parameter Choice for Tikhonov Regularization in Hilbert Scales Leading to Optimal Convergence Rates SIAM Journal on Numerical Analysis. ,vol. 25, pp. 1313- 1326 ,(1988) , 10.1137/0725074