C*-algebras and their nuclear dimension

作者: Jorge Castillejos

DOI:

关键词: Lebesgue covering dimensionPure mathematicsMathematicsState (functional analysis)Dimension (vector space)

摘要: We review the notion of nuclear dimension for C*-algebras introduced by Winter and Zacharias. explain why it is a non-commutative version topological dimension. After presenting several examples, we give brief overview state art.

参考文章(47)
Gerard J. Murphy, C*-Algebras and Operator Theory ,(1990)
George A. Elliott, Guihua Gong, Huaxin Lin, Cornel Pasnicu, Abelian C∗-subalgebras of C∗-algebras of real rank zero and inductive limit C∗-algebras Duke Mathematical Journal. ,vol. 85, pp. 511- 554 ,(1996) , 10.1215/S0012-7094-96-08520-8
Joachim Zacharias, Wilhelm Winter, Completely positive maps of order zero arXiv: Operator Algebras. ,(2009)
N. Christopher Phillips, A Classification Theorem for Nuclear Purely Infinite Simple C -Algebras 1 Documenta Mathematica. ,vol. 5, pp. 49- 114 ,(2000)
Jesper Villadsen, On the stable rank of simple C*-algebras Journal of the American Mathematical Society. ,vol. 12, pp. 1091- 1102 ,(1999) , 10.1090/S0894-0347-99-00314-8
Joachim Cuntz, Simple $C^*$-algebras generated by isometries Communications in Mathematical Physics. ,vol. 57, pp. 173- 185 ,(1977) , 10.1007/BF01625776
W. Forrest Stinespring, Positive functions on *-algebras Proceedings of the American Mathematical Society. ,vol. 6, pp. 211- 216 ,(1955) , 10.1090/S0002-9939-1955-0069403-4
EBERHARD KIRCHBERG, WILHELM WINTER, COVERING DIMENSION AND QUASIDIAGONALITY International Journal of Mathematics. ,vol. 15, pp. 63- 85 ,(2004) , 10.1142/S0129167X04002119